
Overview of the CodeGradX Project
Version: 1751

Christian Queinnec
christian.queinnec@codegradx.org

August 21, 2018

2

This document describes the goals and main features of the CodeGradX project. This
project was previously named FW4EX for Framework for Exercises but this name cannot
be pronounced by a regular human being. However many entities are still named after
FW4EX.

This project proposes a platform where teachers may offer exercises (homeworks) to
students who may submit (upload) their works. These works are mechanically graded
and a report is made available to the student, to their teachers and to the author of
the exercise. Thus an exercise not only contains some questions, it contains as well a
grading program to evaluate and grade students’ works.

This document describes the CodeGradX project, its main features and protocols.
Parts of this document describe the rationale under some decisions, it also contains
notes for myself.

Contents

1 Overview 7
1.1 Terminology . 7
1.2 From the student point of view . 7

1.2.1 Selection of an exercise . 7
1.2.2 Downloading accompanying material 8
1.2.3 Submission . 8
1.2.4 Grading . 8
1.2.5 Result . 8
1.2.6 Conclusion . 9

1.3 From a teacher point of view . 9
1.4 From an author point of view . 10
1.5 From CodeGradX infrastructure point of view 10

1.5.1 Server p (for portal) . 10
1.5.2 Server www (for web site) . 10
1.5.3 Server a (for acquisition) . 11
1.5.4 Daemon md (for marking driver) . 11
1.5.5 Machine ms (for marking slave) . 11
1.5.6 Server d (for dynamic storage) . 11
1.5.7 Server s (for storage) . 12
1.5.8 Server e (for exercise) . 12
1.5.9 Server x (for XML) . 12

2 Exercise protocol (the E protocol) 13
2.1 Summary . 13

2.1.1 Use of equipment files . 15
2.2 Format . 15
2.3 Administrator supplementary interface 15

3 Submission protocol (the A protocol) 17
3.1 User information . 17
3.2 Exercise information . 17
3.3 File content . 18

3.3.1 Batch . 19
3.3.2 Client . 20

3.4 Errors . 20
3.5 Summary . 20
3.6 Administrator supplementary interface 22

4 The XML server (the X protocol) 25
4.1 User authentication . 25
4.2 Summary . 25
4.3 Personal supplementary interface . 26

3

4 CONTENTS

4.4 Administrator supplementary interface TO BE FINISHED 28

5 Dynamic storage protocol (the D protocol) 29
5.1 Summary . 29

6 Storage protocol (the S protocol) 31

7 Case studies 33
7.1 The MOOC “Socle informatique” from CNAM 33

7.1.1 LTI Protocol . 33
7.1.2 Evolutions . 34

8 Authors guide 35
8.1 Choose an identifier . 35
8.2 Naming exercises . 36

8.2.1 Naming new exercises . 37
8.3 Overall directory structure . 37
8.4 Grading . 38

8.4.1 Grading by comparison . 38
8.4.2 Grading by inspection . 39
8.4.3 Marks . 39

8.5 Author’s script . 39
8.6 Environment . 40
8.7 Utilities . 40

8.7.1 win . 40
8.7.2 confine . 42
8.7.3 transcodeCarefully . 43
8.7.4 headtail.sh . 44

8.8 Libraries . 44
8.8.1 Local checks . 44
8.8.2 basicLib.sh . 45
8.8.3 moreLib.sh . 47
8.8.4 imgLib.sh . 51
8.8.5 makefileLib.sh . 52
8.8.6 comparisonLib.sh . 57

8.9 Extra Libraries . 70
8.9.1 libILP.sh . 70

8.10 Patterns . 74
8.10.1 BourgEnBresse.sh . 75
8.10.2 Laon.sh . 79
8.10.3 Moulins.sh . 82
8.10.4 Digne.sh . 86
8.10.5 Gap.sh . 90
8.10.6 Nice.sh . 93

8.11 Languages . 97
8.11.1 Java . 97
8.11.2 Octave . 98
8.11.3 MzScheme . 99

8.12 Examples . 99

9 Campaign management 101
9.1 Set of exercises . 101

CONTENTS 5

10 Grading engine 103
10.1 Exercise life-cycle . 103
10.2 Shells and streams . 103
10.3 CodeGradX agent . 105

10.3.1 Authenticating . 105
10.3.2 Obtaining exercises . 106
10.3.3 Posting a job . 107
10.3.4 Posting multiple jobs . 108
10.3.5 Posting a new exercise . 109

10.4 The new CodeGradX agent in JavaScript 112
10.4.1 Installation . 112

10.5 VM for authors . 112

11 XML formats 113
11.1 Grammar . 113
11.2 Use cases . 115

11.2.1 Student’s submission . 115
11.2.2 Teacher’s batch submission . 115
11.2.3 Teacher’s exercise submission . 116

11.3 Root element: fw4ex . 116
11.4 jobSubmission . 117
11.5 jobSubmittedReport . 118
11.6 multiJobSubmission . 118
11.7 multiJobSubmittedReport . 119
11.8 batchSubmission . 119
11.9 exerciseSubmission . 120
11.10 exerciseSubmittedReport . 120
11.11 studentHistory . 120
11.12 personHistory . 121
11.13 exercisesList DEPRECATED in favor of exercisesPath 122
11.14 exercisesPath . 122
11.15 constellationConfiguration (FUTURE) . 123
11.16 jobTrackerReport (FUTURE) . 124
11.17 acquisitionServerState . 124
11.18 exerciseServerState . 124
11.19 jobsList . 125
11.20 authenticationAnswer . 125
11.21 groupReport . 126
11.22 groupsReport . 126
11.23 errorAnswer . 126
11.24 jobStudentReport . 126
11.25 multiJobStudentReport . 127
11.26 jobAuthorReport . 127
11.27 exerciseAuthorReport . 128
11.28 exercise . 129
11.29 exerciseContent . 130

11.29.1 characteristics . 130
11.30 exerciseStem . 130
11.31 content . 131
11.32 content.question . 131
11.33 infile.or.inline.xhtml.content . 132
11.34 autochecking . 133
11.35 submission . 133
11.36 submission.content . 133

6 CONTENTS

11.37 submission.external.content . 133
11.38 submission.inline.content . 134
11.39 marking . 134
11.40 initializing . 135
11.41 grading . 135
11.42 machine . 136
11.43 grading.question . 136
11.44 limit . 136
11.45 environment . 137
11.46 environment.assignment . 138
11.47 environment.hide . 138
11.48 command . 138
11.49 predefined.action . 138
11.50 echo . 138
11.51 script . 139
11.52 common.script.content . 139
11.53 inline.script . 140
11.54 xml.script . 141

11.54.1 script . 141
11.54.2 loop . 141
11.54.3 chDir . 141
11.54.4 command . 141
11.54.5 component . 141

11.55 external.script . 142
11.56 argument (NOT YET IMPLEMENTED) . 142
11.57 expectation.directory . 142
11.58 expectation.file . 143
11.59 equipment.content . 143
11.60 file (PARTIALLY IMPLEMENTED) . 143
11.61 tag . 144
11.62 authorship . 144
11.63 conditions . 145
11.64 Common abbreviations . 145
11.65 xhtml.section . 146

11.65.1 image PROVISIONAL . 146
11.65.2 xhtml.text.paragraph . 146

11.66 warning . 147
11.67 error . 147
11.68 success . 147
11.69 xhtml.codeblock . 147
11.70 xhtml.enumeration . 148
11.71 xhtml.inline.text . 148
11.72 fw4ex.partial.mark . 149
11.73 xhtml.comparison (NOT YET IMPLEMENTED) 149
11.74 xhtml.file.annotation . 149
11.75 fw4ex.anchor . 150
11.76 Final notes . 150

Chapter 1

Overview

This chapter exposes some terminology then three different points of view on the Code-
GradX project. The points of views are successively taken from a student, a teacher, an
author or the CodeGradX project itself. The various servers that are involved in these
points of view are described in terms of use cases.

1.1 Terminology

A student is someone that has to study an exercise. A teacher is someone that pre-
scribes an exercise to students. An author is someone that designed an exercise. A job
is one answer written by a student sent to an exercise in order to be graded. Grading a
job produces a report. A pseudo-job is one answer written by the author of an exercise
whose grade is specified by the author. A pseudo-job participates to the auto-test of an
exercise. A batch is a set of jobs to be graded in one go and returned to a teacher.

A campaign is a selection of exercises gathered by a teacher and given as assign-
ments to a group of students in order to fulfill some goals for a given duration. Some
statistics are performed on the basis of campaigns.

1.2 From the student point of view

A student browses a CodeGradX web site and selects an exercise (this exercise may as
well be suggested by a teacher), studies the questions proposed in the exercise, writes
one or several files (using a web editor, a regular text editor or a more complex IDE) and
submits the resulting file(s) to some web site. The CodeGradX infrastructure behind
the web site analyzes the files, marks them, annotates them and generates a report (a
file) summarizing this analysis. These successive phases are detailed hereafter.

1.2.1 Selection of an exercise

The selection of an exercise is done via a regular browser. The student browses some
web site built by some teacher and looks for an interesting exercise. The web site may
give advices concerning the selection of a new exercise given the known history of the
student, the web site may also hold sets i.e., predefined sets of exercises recommended
by teachers.

7

8 CHAPTER 1. OVERVIEW

1.2.2 Downloading accompanying material

Once selected, the student has to be registered and authenticated in order to get the
accompanying (program or data) files required to study the exercise. These files may
be downloaded via a regular browser. If there are numerous files to download, they
are gathered in a single (possibly compressed) archive (a zip file since zip libraries are
widely available).

An exercise is an archive containing an XML descriptor that describes it. Texts (and
mainly the stem of the exercise) are HTML fragments. See 11 for more details.

1.2.3 Submission

Once the homework is completed, the student has to submit the resulting files to an
acquisition server (quite often this is a.codegradx.org). These files are gathered in a job
and queued towards the grading process. In order to submit jobs towards an exercise,
you need to know the URL representing the exercise.

A REST-ish protocol has been designed for this submission, see Section 3 for more
details. This protocol may be put to use with a simple web form in a regular browser.
Other special clients (for instance, an Eclipse or Emacs plugin) may also be used.

The submission is directed towards a specific URL contained in the descriptor of the
exercise. This URL addresses an acquisition server. The main goal of an acquisition
server is to be as robust as possible in order to never loose any job corresponding
to a registered student and to a proposed exercise. All non conformant submissions
should be promptly rejected. Once a job is archived, it is queued towards some grading
daemon.

1.2.4 Grading

The grading process analyzes the job. It extracts the grading code from the description
of the exercise and runs it against the student’s files. There is a specific set of rules for
that task, see Appendix 10.

This is a difficult process since the (potentially nefarious) code of the teacher has to
analyze the job (containing potentially malicious code) of the student. Eventually, the
output of the grader, the report, is persistently stored on a storage web server (quite
often the s.codegradx.org).

1.2.5 Result

Finally, for any job, the student may access the associated report through the web site
or his history. Various means allow the student to check whether the jobs are graded
and how to obtain the associated reports (mail, web, feed, etc.).

The author of an exercise can also obtain the associated report. Teachers that pre-
scribe this exercise may also obtain the associated reports.

The storage server is very dumb and only serves reports. In particular, it does not
depend on the grading process and should be immune to any failure of the other servers.
The storage server should be difficult to download recursively.

These reports are anonymous: they do not contain information related to the stu-
dent’s identity. The reports are accessible via the prominent web site or through other
means (mail, feed, etc.).

The storage server may be a dedicated server or an Amazon S3 bucket or an OVH
cloud.

1.3. FROM A TEACHER POINT OF VIEW 9

1.2.6 Conclusion

Figure 1.1 shows the involved servers and their relationship. The most prominent server
is the www.codegradx.org Web server. With this server, students register themselves,
manage their account, choose exercises, supervise their jobs and obtain their report.
More services will be added.

browser

student

IDE

paracamplus.com

w.

a.

m1.

m2.

md.

e.

s. d.

Figure 1.1: Students, servers and their relationships

Besides, the other technical independent servers are:

• the acquisition server accepts jobs,

• the grading daemon handles jobs. This daemon is itself organized as a grading
driver controlling grading slaves.

• the exercise server gives information about exercises.

• the storage server stores reports.

The grading daemon is an internal daemon not to be requested directly by students
or teachers. The acquisition server is reachable from the net; it should be as robust as
possible therefore it is not tied to the database. The storage server is dumb and is not
tied to the database. The storage server is monitored by the dynamic storage server.

The exercise server delivers information about exercises. It is not intended for hu-
mans. This server is tied to the (rather static) database of exercises.

The dynamic part of the database is only accessible from the complex servers: the
web server, the exercise server and the grading daemon(s). This (rather dynamic)
database contains the instantaneous state of the users, of the exercises, of the jobs,
of the servers, etc.

1.3 From a teacher point of view

A teacher defines a campaign that is, a set of exercises, a set of teachers, a set of
students (this set may be open to new students), a starting date and and end date. The
teacher can modify the list of exercises. The teacher can also follow the progress of the
students.

10 CHAPTER 1. OVERVIEW

1.4 From an author point of view

Authors submit an exercise that is, a compressed archive file containing some texts,
some questions and the programs to grade jobs from students.

The business model is as follows (except that it is not yet implemented): the author
sets the price of the exercise. The exercise will be offered on the web site hosted by the
e.codegradx.org server as long as its price exceeds the cost of grading a student’s job.
The author will get the price he sets less the grading cost.

The exercise is uploaded as a compressed (gzip) archive (tar) file. This archive con-
tains a descriptor: a file named fw4ex.xml, an XML file satisfying the fw4ex.rnc grammar
(more precisely the exercise description).

An exercise is identified and versioned by its author. It also receives an internal
identifier within CodeGradX. The archive file contains the texts of the question(s) (these
texts are expressed in a subset of XHTML) and the files (scripts or data) needed to grade
the students’ submissions.

In order to test that the grading process is correct, an exercise also contains pseudo-
jobs whose mark is already known and specified by the author of the exercise. When
an exercise is uploaded, the CodeGradX machinery checks that the pseudo-jobs get
the expected mark. Two pseudo-jobs are easy to incorporate within an exercise: the
empty pseudo-jobs does not contain anything, its expected mark should be zero. The
perfect pseudo-job should get the greatest possible mark. It is recommended to add
more pseudo-jobs.

The pseudo-jobs allow the author to be sure that the uploaded exercise is graded
according to his wishes. It also serves to check the non-regression of the CodeGradX
machinery when this machinery evolves. Finally it also gives an indication of the grad-
ing cost so the price may be adjusted: too expensive, the exercise might not be choosed
by students, too cheap, the exercise cannot be offered since the grading cost will be a
pure loss.

Examples of exercises may be found on the authors’ part of the web site.

1.5 From CodeGradX infrastructure point of view

See Figure 1.1 and Figure 1.2 to accompany the explanations below. There are a num-
ber of independent but specialized servers.

From 2014, most servers as well as marking drivers and marking slaves are now
implemented as Docker containers. All these containers have names prefixed with
paracamplus/aestxyz_.

1.5.1 Server p (for portal)

This is a server presenting the various servers dedicated to a course or to a programming
language. The portal manages students’ registration allowing them to access the servers
of the whole constellation.

1.5.2 Server www (for web site)

This is the main server from which students, teachers and authors manage their ac-
count and monitor the services they had required. This server contains an evolving and
expanding web application.

The www server is intended to be the front end Web server. Currently, there are
specialized web servers (js, unx, scm for instance) that offer a restricted set of exercises
for a restricted set of students).

1.5. FROM CODEGRADX INFRASTRUCTURE POINT OF VIEW 11

IDE

browser

browser

browser

student

author

teacher paracamplus.com

w.

d.

a.

s.

m1.

m2.

md.

e.

c.

Figure 1.2: CodeGradX infrastructure. The arrow tells which machine initiates connec-
tions.

Starting in 2015, these servers do not have access to the central database, they use
a JavaScript API.

1.5.3 Server a (for acquisition)

This is the server handling submissions from students, turning them into jobs. There
is a special protocol to submit files involving a safe cookie and a ciphered identifier for
exercises. See chapter 3 for further details.

To cope with failures, there are more than one acquisition server. To date, these are
a0.codegradx.org, a1.codegradx.org, etc. Currently, a.codegradx.org is a proxy hiding
some acquisition servers.

1.5.4 Daemon md (for marking driver)

This daemon regularly polls the acquisition servers and pulls jobs from them. The
grading driver instantiates grading slaves, feeds them with jobs, polls them to retrieve
the associated reports and eventually transfer jobs and reports to the storage servers.

The grading driver logs facts into the database for the benefit of other servers.
To cope with failures, there are more than one grading server. Jobs are graded

concurrently but eventually stored into the same storage server.

1.5.5 Machine ms (for marking slave)

These (often virtual) machines grade jobs in the most secure way. They are slaves
monitored by the grading driver. They are only accessed via ssh.

1.5.6 Server d (for dynamic storage)

This server monitors the archival of jobs and reports. It is fed by the multiple concurrent
grading drivers and detects marking anomalies if any. It then stores jobs and reports
in the various storage servers available. This is an internal server of the CodeGradX
constellation.

12 CHAPTER 1. OVERVIEW

1.5.7 Server s (for storage)

This server archives jobs and reports. It is fed by the dynamic storage server and ac-
cessed by students, authors or teachers. It may be implemented by a regular httpd
daemon (Apache, Nginx, etc.) correctly configured or a storage server such as S3 from
Amazon or the equivalent from OVH. URLs are UUID-based to avoid directories conges-
tion.

Currently, there are multiple storage servers known with different names such as
s0.codegradx.org, s1.codegradx.org, etc.

1.5.8 Server e (for exercise)

This server archives exercises, it serves them to students. It uses safe identifiers to
name exercises within URLs. It also serves sets of exercises elaborated by teachers.

To cope with failures, there are more than one exercise server. To date, these are
e0.codegradx.org and e1.codegradx.org, etc. Server e.codegradx.org is a proxy hiding
some exercise servers.

1.5.9 Server x (for XML)

This server proposes a number of REST-based services.
Currently, there are more than one such server, they have all acces to a com-

mon, shared, single database x0.codegradx.org, x1.codegradx.org etc. And as usual,
x.codegradx.org is a proxy hiding some servers.

Chapter 2

Exercise protocol (the E
protocol)

This chapter describes how to discover information concerning an exercise. A special
server nicknamed e.codegradx.org delivers this information since it is rather static and
intended for computers rather than for humans. CodeGradX clients (embedded in some
IDE such as Eclipse or Emacs) analyze this information and build pages, forms, dialogs
to let the student practice the exercise with great comfort.

2.1 Summary

Concerning an exercise, the delivered information contains whatever information re-
quired by the student to practice this exercise, to get the accompanying files and to
submit one or many answers. This information is delivered as a compressed (zipped)
archive containing an XML descriptor (a file named fw4ex.xml, an instance of the exerciseContent

element, see chapter 11) describing the exercise, the accompanying files, the questions
and the scripts required to initialize the student’s machine (for instance, compile re-
quired libraries, uncompress data files, etc.) to let him able to practice the exercise.

One may only perform the following public actions (E identifies an exercise, cf. 3.2).
The e.codegradx.org server cannot be implemented by a dumb storage server since the
E parameter must be deciphered, the user’s cookie may also be deciphered).

13

14 CHAPTER 2. EXERCISE PROTOCOL (THE E PROTOCOL)

GET /alive return some JSON data
telling if the server is alive

GET /exerciseload return some JSON data
telling how many exercises
are waiting to be checked

GET /exercise/E get the whole exercise.tgz
PUT /exercise/E set the whole exercise.tgz
DELETE /exercise/E delete the whole exercise.tgz
GET /exercisecontent/E get the details of an exercise
GET /exercisecontent/E/content get the XML description of

the exercise
GET /exercisecontent/E/stem get the XML stem of the exer-

cise
GET /exercisecontent/E/path/P get the equipment file P
GET /path/S get the S set of exercises
POST /exercises/ post a new exercise
GET /summary/UUID get the public (if any) sum-

mary of the exercise

/alive returns a JSON document with date and version of the server. This allows to
check whether the E server is alive.

/exerciseload returns a JSON document with date and load that is, the number of
exercises that are waiting to be checked.

/exercise/E for admins only, gets, sets or deletes the whole exercise.tgz.

/exercisecontent/E returns a zip file containing a detailed description of an exercise.
This zip file is intended for students to allow them to get the stem and relevant
associated files. The MIME type is application/octet-stream.

/exercisecontent/E/content returns an XML file (an instance of exerciseContent) de-
scribing the exercise. This file corresponds to the fw4ex.xml stored in the previous
zip file. This file also contains the stem and the summary as obtained by the next
URLs as well as the list of equipment files that may be individually retrieved by an
URL below.

/exercisecontent/E/stem returns an XML file containing the stem of the exercise that
is, a readable text with an introduction followed by questions. This is a convenient
service for the OneLiner framework that displays a question and an input box,
submits it to the CodeGradX system, waits for the grading reports and displays it.
The stem is an XML document (an instance of exerciseStem) also containing the
list of equipment files.

/exercisecontent/E/path/P returns the single P equipment file from the exercise.
Equipment files are files given to the student in order to perform the exercise.
Of course, the requester should be allowed to retrieve this file.

/path/S returns an XML document (an instance of exercisesPath) describing a set of
exercises to perform. Sets are named (often with the name of the corresponding
lectures). It may also return an equivalent JSON document.

/exercises/ is used to post a new exercise. Only users blessed as authors may post
exercises. This service returns an XML document containing the UUID christening
the fresh exercise and the location where the associated report will pop up.

When returning JSON data, JSONP (or JSOD Javascript on demand) mode is also
supported. The appropriate query string parameter may be named cb.

2.2. FORMAT 15

2.1.1 Use of equipment files

Equipment files are given to the students, they accompany the stem. They are often
used to provide students with data, libraries, code fragments, etc. They may also be
used to provide images that can appear in stems. Each equipment file can be fetched by
an URL such as /exercisecontent/E/path/P. So a stem containing an

tag will include the image file P within the stem.

2.2 Format

This section details the content of the zip file describing an exercise. This zip file is
an extract of the whole tar gzipped file restricted to the sole information needed by
students. The zip file contains at its root a descriptor (a file named fw4ex.xml: an extract
of the original fw4ex.xml from the exercise) describing the content of the zip file. Other
files may be present, they are referenced from the descriptor. All this information is
derived from the original exercise as designed by its author(s). All this information may
be disclosed to the student.

Here follows an example of the content of such a zipped file for an imaginary exercise:

fw4ex.xml
xml/question1.xml
document.pdf
otherdata/u1.data.gz
otherdata/u2.data.gz
otherdata/u3.data.gz

The descriptor contains an identification element. This element contains the name
of the exercise (as given by its author(s)), its birth date, a summary (an XHTML-like
simple text) and the identity of its author(s) along with the email to use if the student
may contact the author (by default, this is a CodeGradX internal email address).

The descriptor contains a conditions element describing what is required to practice
this exercise. The conditions may be financial, may require some specific hardware or
software or may even require some special knowledge or abilities.

The descriptor contains a equipment element describing all the files of the archive,
their digest (to check file integrity), their mode (binary or text (including their encoding)).

The descriptor contains a initializing element describing how to install the accom-
panying files on the student’s machine. The installation is a series of scripts to run
and files to copy somewhere. Normally files are only installed somewhere under the
personal (HOME) directory of the student.

The descriptor contains a content element describing the stem of the exercise. The
exercise is made of an introduction, a series of questions and followed by a conclusion.
Each question has a name, a maximal mark, some expectations (the name of the files
that the student should submit) and of course the stem of the question.

2.3 Administrator supplementary interface

Other requests are possible but mostly restricted to administrators.

16 CHAPTER 2. EXERCISE PROTOCOL (THE E PROTOCOL)

PUT /exercisecontent/E replaces the student’s view of
an exercise.

DELETE /exercisecontent/E removes the student’s view of
an exercise.

GET /exercise/E serves the original tar
gzipped file defining an
exercise.

PUT /exercise/E replaces the original tar
gzipped file defining an exer-
cise with the tar gzipped file
contained in the body of the
request.

DELETE /exercise/E removes an exercise.
GET /exercises returns the state of the

server.
GET /exercises/ list all new exercises
GET /exercises/UUID get the exercise submission

named UUID
DELETE /exercises/UUID remove the exercise submis-

sion named UUID

/exercisecontent/E returns a zip file containing a detailed description of an exercise.
The MIME type is application/octet-stream.

Using a PUT request towards this URL, allows to replace an exercise (in fact, this
is not advised since a new version of an exercise should have a new identifier. This
eases checking non regression). However this service may be used in conjunction
with the following one to manage the memory space the E server uses. The body
of the request should be a zipped file.

/exercise/E returns the original tar gzipped file defining an exercise. Since this is an
asset, only administrators may perpetrate this! PUT and DELETE are also offered
to manage the memory space used by the E server.

/exercises allows to know the state of the E server. It also allows to list the freshly
arrived exercises that must be checked before being offered by the CodeGradX
system.

/exercises/UUID allows to get or remove a freshly arrived exercise.

A fresh exercise (a tar gzipped file defining an exercise) is wrapped within an exercis-
eSubmission (a tar gzipped file containing the original exercise as well as an fw4ex.xml

containing administrative information). A fresh exercise will be fetched by a marking
driver that will run the autocheck procedure in order to verify whether the exercise may
be deployed.

Chapter 3

Submission protocol (the A
protocol)

This chapter describes how to send one or more files to an acquisition server. The
submission is an HTTP request that must be accompanied by two other pieces of infor-
mation: (i) the identity of some user, (ii) the identity of the exercise that must be used
to mark the job. The protocol conforms to REST style, it complies with HTTP rules.

The server first checks whether the exercise is valid (no job is accepted for URLs that
do not mention a proposed exercise). Then, the server checks whether the student is
valid. Finally, the format of the body of the HTTP request is analyzed; the size of the
body must not exceed some predefined limits.

3.1 User information

The identity of the user, whose account will be debited, is specified via a cookie. This
cookie is acquired by the submitting client (a browser or some other plugin plugged
into some IDE) after registration and authentification on the authentication server
x.codegradx.org. The cookie is named u, its value is a so-called “safe cookie” that
is, some information safely identifying the user. A safe cookie is a regular cookie which
payload (the identity of the user) is signed with the private key of the x.codegradx.org
server, the concatenation of these two pieces of data (the identity of the user and the
signature) is itself ciphered with the public key of the Web server. Therefore this cookie
is normally unreadable (the identity of the user cannot be deciphered from the cookie)
and unforgeable (only x.codegradx.org may create these safe cookies).

Here is an example of such a cookie. The cookie is sent along with the other HTTP
parameters in the head of the request. It should be sent as a single line though the
following example is cut to fit line length.

Cookie: u=UdfE3rNeMDlp9vLYAzFYyxzyOhhWYZ3buSoNH3a0H4Xws9mOUEiEEkg
DJNSxkqtidT5_5f2taoOAo2PanzV2xFiOp1oesIsY9u7EW -upyf_8hUqtsKKgE1t0
r__PbzPsPynYlxg77EsGld_C0kdIcZq3wmBOmcJn15wWZcNyjZCw@;path=/

3.2 Exercise information

The URL to post a file looks like /exercise/E/job where E identifies the exercise. The
request should use the POST method. The sent file is somewhere in the body of the
request (see next section). In case of success, the response code is 201 (created) and

17

18 CHAPTER 3. SUBMISSION PROTOCOL (THE A PROTOCOL)

a Location header tells which URL to use to monitor the job (this URL will address
another server not the acquisition server whose only goal is to accept jobs).

An exercise is identified by a (long) string as in the following URL (cut into several
lines to fit line length):

/exercise/UpxcmU_ca8rm6pBYKsk5hEcFVyP9j2s -gaqEim9hB0cE0V41G0G98z
T5WYKyxvrN3lQdiusXCdSBiVbXP4EKphBpKcCZqHPetp3TMmCcSY0WM4qnNaqqXs
2N37v6IqPSw/job

3.3 File content

There are two cases depending on the number of files to submit. If there is more than
one file, they must be gathered in a tar gzipped archive file or in a zipped file. For
instance, if you want to send the a and b/c files then the archive must contain these
files with these names. Don’t add superfluous prefix directory names (for instance, d/a
and d/b/c). Normally your submitting client should take care of that point.

There are two ways to submit a single file. It may be sent as the whole body of
the POST request. The MIME type should then be application/octet-stream. If you
do not upload an archive file, you must send an accompanying Content-Disposition
HTTP parameter to define the name of the uploaded file. This parameter is useless
when uploading an archive file since the archive file already contains the name of the
archived files.

Here is a minimal example of such an HTTP request that uploads a file named solu-
tion.txt containing two lines:

POST /exercise/UpxcmU_ca8rm6pBYKsk5hEcFVyP9j2s -gaqEim9hB0cE0V41G0G98z
T5WYKyxvrN3lQdiusXCdSBiVbXP4EKphBpKcCZqHPetp3TMmCcSY0WM4qnNaqqXs
2N37v6IqPSw/job HTTP/1.0

Cookie: u=UdfE3rNeMDlp9vLYAzFYyxzyOhhWYZ3buSoNH3a0H4Xws9mOUEiEEkg
DJNSxkqtidT5_5f2taoOAo2PanzV2xFiOp1oesIsY9u7EW -upyf_8hUqtsKKgE1t0
r__PbzPsPynYlxg77EsGld_C0kdIcZq3wmBOmcJn15wWZcNyjZCw@;path=/

Content-Type: application/octet-stream
Content-Disposition: inline; filename="solution.txt"

#! I’m the content
of the solution.txt file.

If you alternatively choose not to send the raw file as it stands, you may wrap it
into an archive (say a tar-gzipped file) and POST the following HTTP request (where the
content is displayed as backslashed bytes). Observe that the Content-Disposition is no
longer required since the name of the file (solution.txt) is already known by the archive
file. Care must be taken if alternate encoding (base64) or transfer (gzip) are used.

POST /exercise/UpxcmU_ca8rm6pBYKsk5hEcFVyP9j2s -gaqEim9hB0cE0V41G0G98z
T5WYKyxvrN3lQdiusXCdSBiVbXP4EKphBpKcCZqHPetp3TMmCcSY0WM4qnNaqqXs
2N37v6IqPSw/job HTTP/1.0

Cookie: u=UdfE3rNeMDlp9vLYAzFYyxzyOhhWYZ3buSoNH3a0H4Xws9mOUEiEEkg
DJNSxkqtidT5_5f2taoOAo2PanzV2xFiOp1oesIsY9u7EW -upyf_8hUqtsKKgE1t0
r__PbzPsPynYlxg77EsGld_C0kdIcZq3wmBOmcJn15wWZcNyjZCw@;path=/

Content-Type: application/octet-stream

\037\213\010\0...

The second way is to upload the file as part of the MIME type multipart/form-data.
The name of the form field to use is content. Additionally if you do not upload an
archive file, you must send an accompanying Content-Disposition HTTP parameter to

3.3. FILE CONTENT 19

define the name of the uploaded file. This parameter is useless when uploading an
archive file since the archive file already contains the name of the archived files.

Here is an example of such an HTTP request that sends a file named solution.txt
containing two lines:

POST /exercise/UpxcmU_ca8rm6pBYKsk5hEcFVyP9j2s -gaqEim9hB0cE0V41G0G98z
T5WYKyxvrN3lQdiusXCdSBiVbXP4EKphBpKcCZqHPetp3TMmCcSY0WM4qnNaqqXs
2N37v6IqPSw/job HTTP/1.0

Content-Type: multipart/form-data; boundary=FW4EX
Content-Length: 168
Cookie: u=UdfE3rNeMDlp9vLYAzFYyxzyOhhWYZ3buSoNH3a0H4Xws9mOUEiEEkg

DJNSxkqtidT5_5f2taoOAo2PanzV2xFiOp1oesIsY9u7EW -upyf_8hUqtsKKgE1t0
r__PbzPsPynYlxg77EsGld_C0kdIcZq3wmBOmcJn15wWZcNyjZCw@;path=/

--FW4EX
Content-Disposition: form-data="content"; filename="solution.txt"
Content-Type: application/octet-stream

#! I’m the content
of the solution.txt file.
--FW4EX--

The previous examples use HTTP/1.0 but HTTP/1.1 protocol may also be used.
The acquisition server answers with a jobSubmittedReport XML document. This report

(cf. Section 11) contains the URL to watch on a storage server where the jobStudentReport

will appear.

3.3.1 Batch

Teachers may want to send a number of students’ files in one go. For instance, they
may collect files on students’ computers, gather them then send them to the grading
machine. This is a “batch”. When submitted successfully a batch will return a location
where the batch report will appear. That report will contain the URL of the grading
reports for all the students’ submissions.

The protocol is slightly more complex since, to ease processing results, the teacher
may add some information to the batch and/or to the individual students’ submissions.

First, the teacher has to collect the students’ files to grade. Let say that these files
are stored in a students/ directory with one sub-directory per student. The content of
the students sub-directories should be structurally similar as in:

% find students
1234567/options
5432176/options
7623451/options

The teacher may submit these sub-directories as tar-gzipped, zipped files or as they
are. However, to ease further processing by the teacher, the teacher has to furnish
some additional information in a multiJobSubmission XML document. Here is an example
of such a fw4ex.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<fw4ex version="1.0">
<multiJobSubmission label="{attempt: 1}">
<job label="one" filename="students/1234567/"/>
<job label="two" filename="students/5432176/"/>
<job label="three" filename="students/7623451/"/>

</multiJobSubmission>
</fw4ex>

20 CHAPTER 3. SUBMISSION PROTOCOL (THE A PROTOCOL)

In this XML document, the teacher tags the batch with a label (looking like a JSON
record) then tags the three students’ directories. These labels may help the teacher
to associate the grading reports to the students. This is necessary since the grading
machinery has no clue on who is graded. This information will be sent back to the
teacher with the final batch grading report.

The batch is then tar-gzipped as follows:

% tar tzf batchToSend.tgz
./fw4ex.xml
./students/1234567/options
./students/5432176/options
./students/7623451/options

The filename attributes in the multiJobSubmission XML document tells where are the
files within the tar-gzipped batch file. The fw4ex.xml must be located at the toplevel.

The tar-gzipped file (or zipped) is then POSTed to the URL of the exercise /exercise/E/batch

with the methods exposed in Section 3.3.
The acquisition server answers with a multiJobSubmittedReport XML document. This

report (cf. Section 11) contains the URL to watch on a storage server where the
multiJobStudentReport will appear.

3.3.2 Client

To ease job submission, with client packages such as the Perl module WWW::Mechanize,
is provided an URL that returns a form only appropriate to submit for the intended
exercise:

/exercise/UpxcmU_ca8rm6pBYKsk5hEcFVyP9j2s -gaqEim9hB0cE0V41G0G98z
T5WYKyxvrN3lQdiusXCdSBiVbXP4EKphBpKcCZqHPetp3TMmCcSY0WM4qnNaqqXs
2N37v6IqPSw/form

For instance, a submitting client, in Perl, may be as short as:

use WWW::Mechanize;
my $mech = WWW::Mechanize ->new;
$mech->cookie_jar({ file => $cookieJarFile }); # set the student
my $url = $serverName . "/exercise/$exerciseId/form";
$mech->get($url); # get the form
$mech->submit_form(
form_name => ’form’, # fill the form
fields => { ’content’ => $nameOfTheFileToSend },
button => ’do’, # post the file

);

To ease batch submission, an alternate form exists.

3.4 Errors

In case of errors or problems, the response has an HTTP erroneous code (from the 400
family) and is associated to a string starting with FW4EX followed by an error code (a three
figure integer prefixed with the letter e and suffixed with a human readable message.

3.5 Summary

An acquisition server is not browsable. One may only perform the following public
actions with the associated URL (where E identifies the exercise and J is the UUID
identifying a job or a batch):

3.5. SUMMARY 21

GET /alive return a JSON document
telling whether the server is
alive

GET /jobload return a JSON document
with the load that is, the
number of jobs waiting to be
marked.

GET /exercise/E/state check whether an exercise is
ready to accept job

GET /exercise/E/form get an XHTML form to post a
job towards an available ex-
ercise

POST /exercise/E/job post job towards ready exer-
cises

GET /job/J/state check whether a job was ac-
cepted

GET /exercise/E/batchform get an XHTML form to post
a batch towards an available
exercise

POST /exercise/E/batch post batch towards a ready
exercise

GET /batch/J/state check whether a batch was
accepted

/alive returns a JSON document with date and version of the server. This allows to
check whether the A server is alive.

/jobload returns a JSON record showing the load of the acquisition server. The record
lists the number of archived jobs not yet fetched by the marker, the date of the
oldest job waiting to be marked (if any) and the time (the (Un*x) number of seconds
since the epoch) when was produced this record. This record is refreshed every
minute.

/exercise/E/state checks whether an exercise is ready to accept jobs (E identifies the
exercise). If the exercise exists and is available, the HTTP return code is 200.
The body of the HTTP response contains the FW4EX e000 message meaning that the
exercise is ready.

/exercise/E/form returns an XHTML form to post a job towards an available exercise
(E identifies the exercise). This URL is not very useful.

/exercise/E/job posts job towards ready exercises (E identifies the exercise). If the job
is correctly stored on the acquisition server, the HTTP return code is 201 (Created)
and is accompanied with a Location parameter with the URL to monitor.

/job/J/state checks whether a job was accepted (J identifies the job created by the
previous URL). If such a job exists on the acquisition server, the HTTP return code
is 200. The body of the HTTP response contains the FW4EX e001 message meaning
that the exercise is archived. Pay attention that this request may only be answered
for a short while. Once the grading report is safely stored on the storage server,
the job will be removed and the URL will return an error. The URL to use to obtain
the grading process is the URL returned by the POST request.

/exercise/E/batchform returns an XHTML form to post a batch towards an available
exercise (E identifies the exercise).

22 CHAPTER 3. SUBMISSION PROTOCOL (THE A PROTOCOL)

/exercise/E/batch posts batch towards ready exercises (E identifies the exercise). If
the batch is correctly stored on the acquisition server, the HTTP return code is 201
(Created) and is accompanied with a Location parameter with the URL to monitor.

/batch/J/state checks whether a batch was accepted (J identifies the batch created
by the previous URL). If such a batch exists on the acquisition server, the HTTP
return code is 200. The body of the HTTP response contains the FW4EX e001 message
meaning that the exercise is archived. Pay attention that this request may only be
answered for a short while. Once the grading report is safely stored on the storage
server, the batch will be removed and the URL will return an error. The URL to
use to obtain the grading report is the URL returned by the POST request.

Responses normally are in XML. HTTP error codes should not be ignored.
When returning JSON data, JSONP (or JSOD Javascript on demand) mode is also

supported. The appropriate query string parameter may be named cb or callback.

3.6 Administrator supplementary interface

Other requests to the acquisition server are possible but they are restricted to admin-
istrators. In particular, the acquisition server is regularly polled by the grading driver
daemon in order to get new jobs to mark. Here are the administrator requests (where J
(an UUID) identifies a job):

GET /jobs returns the list of pend-
ing jobs (identified by their
UUID)

GET /job/J/submission returns the J job
DELETE /job/J deletes the J job
GET /batches returns the list of pending

batches (identified by their
UUID)

GET /batch/J/submission returns the J batch
DELETE /batch/J deletes the J batch
GET /checkexercise/E decrypt part of the exercise

identifier
GET /checkcookie decrypt part of the user’s

cookie

/jobs This request returns the list of pending jobs. They are sorted by creation date
(oldest first). The body of the answer is an acquisitionServerState XML document
(see fw4ex.rnc grammar in chapter 11).

/job/J/submission This request returns a job identified by J (an UUID). A job is a
compressed archive (tar gzipped) containing a fw4ex.xml descriptor describing the
job (the user, the intended exercise, the creation date) as well as the files contained
in the job. The fw4ex.xml descriptor is a jobSubmission XML document (see fw4ex.rnc

grammar in chapter 11).

/job/J This request deletes a job J from the pending jobs that are archived on the
acquisition server.

/batches This request returns the list of pending batches. They are sorted by cre-
ation date (oldest first). The body of the answer is an acquisitionServerState XML
document (see fw4ex.rnc grammar in chapter 11).

3.6. ADMINISTRATOR SUPPLEMENTARY INTERFACE 23

/batch/J/submission This request returns a batch identified by J (an UUID). A job
is a compressed archive (tar gzipped) containing a fw4ex.xml descriptor describing
the batch (the user, the intended exercise, the creation date) and the name of
the related jobs. The fw4ex.xml descriptor is a batchSubmission XML document (see
fw4ex.rnc grammar in chapter 11).

/batch/J This request deletes a batch J from the pending batches that are archived
on the acquisition server.

/checkexercise/E This request checks the identifier E and returns (as a text/plain
document) the UUID that identifies an exercise. This is a technical URL not very
useful for clients.

/checkcookie This request checks the user cookie and returns (as a text/plain docu-
ment) the number that identifies a user. This is a technical URL not very useful
for clients.

24 CHAPTER 3. SUBMISSION PROTOCOL (THE A PROTOCOL)

Chapter 4

The XML server (the X protocol)

This chapter describes some REST-based protocols provided by the x.codegradx.org:

1. This server provides a way to be authenticated and thus delivers cookies required
to interact with other servers.

2. This server also provides information on the user and his history of interactions
with the constellation.

3. This server provides administrative methods to inspect the database and the state
of the constellation.

4.1 User authentication

When addressed with a safe cookie identifying a user, the x returns an authenticatio-
nAnswer that is, an XML document describing the user. This URL allows to check
whether a cookie is valid.

There might be more than one way to get a valid safe cookie. To post a login and
a password to the /direct/ URL is a possibility. The login and password are checked
in the database and if they match a registered user, a safe cookie is generated and
returned accompanied with an authenticationAnswer XML document describing the
user.

4.2 Summary

The XML server provides the following URLs.

25

26 CHAPTER 4. THE XML SERVER (THE X PROTOCOL)

GET / Describe the current authen-
ticated user with an XML au-
thenticationAnswer or JSON
record. Otherwise return the
default banner of the server.

GET /alive return a JSON document
telling whether the server is
alive.

GET /dbalive return a JSON document
telling whether the server is
alive and has a working ac-
cess to the database.

POST /direct/ Should be accompanied with
a login and a password. If
they are correct, this ser-
vice returns a safe cookie
and an authenticationAnswer
XML report or JSON record.

GET /direct/checkForm Return an XHTML form al-
lowing an user to submit lo-
gin and password informa-
tion. This is an helper ser-
vice. This URL is not very
useful.

The format of the answer (XML or JSON) is chosen after the Accept parameter. When
returning JSON data, JSONP (or JSOD Javascript on demand) mode is also supported.
The appropriate query string parameter may be named cb or callback.

4.3 Personal supplementary interface

These services may be freely invoked by the requester as far as the returned informa-
tion concerns him. Therefore, one may obtain his personal information (jobs, badges,
invoices, etc.) but teachers may obtain information about their students and exercise
authors may obtain information about the jobs graded against the exercises they create.
Above all, admins may see everything.

4.3. PERSONAL SUPPLEMENTARY INTERFACE 27

GET /person2 get the history that is, the
list of all graded jobs submit-
ted by the requester that is,
a studentHistory XML docu-
ment.

POST /person/selfmodify modifies the information as-
sociated to the requester.
One may thus change one’s
own password, pseudo or
email. The result is a au-
thenticationAnswer XML doc-
ument.

GET /campaigns/ lists the campaigns associ-
ated to the requester whether
as a student or as a teacher.
The result is a JSON record,
campaigns have a name, a
start time and an end time.
This allows to know which
are still active.

GET /campaign/C Describes the campaign by
its name C. The result is
a JSON record with the list
of all exercises (name, nick-
name and uuid only).

GET /skill/C Request the skills of the
various (anonymous) partic-
ipants of a campaign. The
own skill of the requester
is also provided so one may
judge of its own skill rela-
tively to the others. The pa-
rameter C is the name of the
campaign (an identifier often
suffixed by the name of a
term).

GET /history/campaign/C Lists the jobs of the requester
associated to the exercises of
the campaign C. Return a
JSON result.

GET /jobs/person/P Request the jobs submitted
by person P where P is the
id of a person. The list is
controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

GET /jobs/job/J Request the jobs identified as
J where J is the uuid of the
job (there is one per Marking
Driver that graded the job).
The list is controlled by three
query parameters offset,
count and after. The out-
put format depends on the
Accept parameter and may be
text/xml or application/json
or text/csv.

GET /jobs/exercise/E Request the jobs submitted
against exercise E where E
is the uuid of the exercise.
The list is controlled by three
query parameters offset,
count and after. The out-
put format depends on the
Accept parameter and may be
text/xml or application/json
or text/csv.

GET /jobs/batch/B Request the jobs submitted
in batch B where B is the
uuid of the batch. The list
is controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

GET /batches/person/P Request the batches submit-
ted by person P where P is
the id of a person. The list
is controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

GET /batches/job/J Request the batches con-
taining job J where J is the
uuid of the job. The list is
controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

GET /batches/exercise/E Request the batches submit-
ted against exercise E where
E is the uuid of the exercise.
The list is controlled by three
query parameters offset,
count and after. The out-
put format depends on the
Accept parameter and may be
text/xml or application/json
or text/csv.

GET /batches/batch/B Request the batches submit-
ted in batch B where B is the
uuid of the batch. The list
is controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

GET /batches/batchreport/B Request the jobs submitted
in batch B where B is the
uuid of the batch.

GET /exercises/person/P Request the exercises au-
thored by person P where P
is the id of a person. The list
is controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

GET /exercises/job/J Request the exercise asso-
ciated to job J where J is
the uuid of the job. The list
is controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

GET /exercises/exercise/E Request the exercise E where
E is the uuid of the exercise.
The list is controlled by three
query parameters offset,
count and after. The out-
put format depends on the
Accept parameter and may be
text/xml or application/json
or text/csv.

GET /exercises/batch/B Request the exercise associ-
ated to batch B where B is
the uuid of the batch. The
list is controlled by three
query parameters offset,
count and after. The out-
put format depends on the
Accept parameter and may be
text/xml or application/json
or text/csv.

GET /badges/person/P Request the badges earned
by person P where P is the
id of a person. The list is
controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

GET /invoices/person/P Request the invoices due
by person P where P is the
id of a person. The list is
controlled by three query
parameters offset, count
and after. The output for-
mat depends on the Accept
parameter and may be
text/xml or application/json
or text/csv.

28 CHAPTER 4. THE XML SERVER (THE X PROTOCOL)

The count query parameter tells how many results are required. By default, count
is limited to 20. With the offset parameter, you may thus require the count results
numbered offset, offset+1, offset+2, . . . , offset+count-1. Offsets start at 0.

The last query parameter, after: a date, filters results to be more recent than that
date. Dates are expressed as three numbers: year-month-day.

4.4 Administrator supplementary interface TO BE FIN-
ISHED

The following services require authentication and may only be used by administrators.

POST /person/create registers a new person and
login. The following infor-
mation must be given: lo-
gin, lastname, firstname and
email. Additionally, pass-
word and pseudo may also
be given. The returned doc-
ument is a authenticationRe-
port XML document.

POST /person/modify/LOGIN modifies the information as-
sociated to a person and/or
associated login. One may
change his password, pseudo
or email. The returned docu-
ment is a authenticationRe-
port XML document.

Chapter 5

Dynamic storage protocol (the D
protocol)

Usually there are more than one running grading server, a D server is co-located with
an S (storage) server; for every job, it receives the grading reports produced by the
running grading servers. It compares grading reports and keeps the best one in case of
discrepencies between grading servers. The most usual case is a grading server with an
internal booting error yielding a mark equal to zero for every graded job. Of course, the
administrator of the constellation is notified!

5.1 Summary

The dynamic storage server provides the following URLs.

GET /alive return a JSON document
telling whether the server is
alive

PUT /storer/J Store a file into the directo-
ries served by an accompany-
ing S server.

POST /storer/J Store a file into the directo-
ries served by an accompany-
ing S server.

In fact, a dynamic storage server stores job reports, exercise reports, batch reports,
invoices, badges, etc. This server is only used internally from marking drivers or various
other management processes.

29

30 CHAPTER 5. DYNAMIC STORAGE PROTOCOL (THE D PROTOCOL)

Chapter 6

Storage protocol (the S protocol)

There is no such protocol. Storage servers are addressed with regular GET URLs looking
like:

/s/U/U/.../I/D/uuid.xml Grading report - jobStudentReport
/s/U/U/.../I/D/uuid_.xml Author report - jobAuthorReport
/e/U/U/.../I/D/uuid.xml Exercise report - exerciseAuthorReport
/b/U/U/.../I/D/uuid.xml Batch report - multiJobStudentReport
/c/U/U/.../I/D/campaign.pdf Certificate
/f/U/U/.../I/D/f*.pdf Invoice

U/U/.../I/D is the UUID converted into a series of directories with names reduced to
a single letter.

31

32 CHAPTER 6. STORAGE PROTOCOL (THE S PROTOCOL)

Chapter 7

Case studies

In this chapter, some use cases of CodeGradX are described. This is an area where
much progress were made since 2008. The trend now is to hide the various HTTP
protocols with some JavaScript libraries, see 10.4.1.

7.1 The MOOC “Socle informatique” from CNAM

In 2017, from april to july, the CNAM had been using the CodeGradX infrastructure to
grade C programs proposed in a MOOC around the C programming language. A new
organization was set up to ensure robustness and speed.

First, the central database was moved to an AWS (Amazon Web Service) RDS (Rela-
tion Data Server) machine accompanied by a backup server. Then a set of one A, E, X
and CC servers were set up on an AWS ECS (EC2 Container Service) machine while a
Marking Driver and one marking slave were deployed on another AWS ECS machine.
The CC server was the dedicated Web server displaying the exercises of the MOOC.

The A, E, X and CC servers were named a2.codegradx.org, e2.codegradx.org, x2.codegradx.org
and cc2.codegradx.org. The configuration of cc2 was set up to prefer addressing a2,
e2 and x2 (which are all co-located on the same physical machine). The e2 server was
configured to statically hold all the exercises required for the MOOC.

The marking driver and its slave was only polling the a2 and e2 servers every 5
seconds (instead of the usual 10 seconds).

Technically, the two ECS machines were running Docker containers. The machine
hosting a2, e2, x2 and cc2 hosts an additional nginx container to proxy the http and
https ports towards the appropriate container.

The MOOC was hosted by FUN (France Université Numérique) running Open EdX,
exercises were proposed as buttons leading the student towards CodeGradX. The first
access to CodeGradX registers the student with EdX provided information (pseudo and
email). Other accesses display the exercise directly. The final mark is sent back to EdX
using the LTI protocol (Learning Tools Interoperability).

7.1.1 LTI Protocol

Within EdX, you must define first the LTI provider with an LTI passport. Then you
define an LTI consumer with an host (here https://x2.codegradx.org/fromedx/) and
custom parameters such as:

["site=cc2.codegradx.org",
"uriprefix=/directoneliner",
"exercisename=cnam.mooc.socle.convert.1",
"lang=fr",

33

34 CHAPTER 7. CASE STUDIES

"groups=cnam-socle-informatique -2017s1"
]

The URL of the exercise is derived from site, uriprefix and exercisename custom pa-
rameters. The X server will redirect the student towards this URL after authentication
and registration of the students. This is possible since EdX authenticates users, EdX
can be trusted and the LTI protocol is trustful. The site is the Web server that displays
the set of exercises to students.

The lang can be fr or en.
The groups (optional) custom parameter lists (comma-separated) group names. Stu-

dents are automatically included in these groups. Groups are used to list students and
compute statistics.

7.1.2 Evolutions

Some machines are now running on Google Computing Platform. This is the case of a
couple of one Marking Driver and its Marking Slave. This machine also hosts a load
balancer thus providing a.codegradx.org distributing work towards a3.codegradx.org,
a4.codegradx.org and a5.codegradx.org and similarly for e.codegradx.org and x.codegradx.org.

Due to the characteristics of the various machines: some are fast with a small disk
(25G) while some others are slower but with a big disk (2T); storage servers have more
individual roles. The fastest machine holds job reports only for a day, they are then
migrated to a slower but bigger server. After 3 months, job reports are migrated to a
slower storage server alike Amazon S3.

Chapter 8

Authors guide

This chapter suggests how to create an exercise. It is useful for authors that may use
some libraries to ease their job. Once an exercise is built, authors should look at the
CodeGradX agent (page 105) to automatize the test of their exercise.

8.1 Choose an identifier

By convention, an exercise is developped in a directory whose name is the unique name
that will identify your exercise now and for ever therefore a name cannot be reused.

Usually the name is similar to a Java package name such as tld.yourdomain.thema.nickname.version.
Some prefixes are reserved and you cannot use them; these are com.paracamplus, org.paracamplus
and org.fw4ex. However, the org.example. prefix is freely usable by every author to test
the infrastructure. There is no guarantee of permanence though for exercises named
with this prefix.

All authors are associated with at least one prefix by default lastname.firstname.

Once a name is chosen, say queinnec.christian.essai.1, create a directory of that
name and create a file name fw4ex.xml within it. Since this file must be valid, download
the grammar for CodeGradX in order to check your fw4ex.xml with:

xmllint --relaxng fw4ex.rng name.queinnec.essai.1/fw4ex.xml

Of course, you may also download one of the public exercises and clone its fw4ex.xml

file.
The rest of this section details some of the more interesting XML section you, as

an author, has to complete in the fw4ex.xml file. For more precise information, see the
commented grammar.

The name you chose for the exercise must be recorded in the identification section.
The nickname is a short name, usually a single word, that identify the exercise among
a series of exercises. The summary is one sentence that roughly defines what the exercise
is all about. The description is a longer text that describes in more details what is
the exercise, what it requires, what it checks. This is not as detailed of course as the
stem which may appear in the introduction section. The identification, summary and
description are public information displayed in various forms. The other parts of the
exercise such as stems are not public.

The cost is what you may want to be paid when one student runs your exercise. It
cannot be less than 0.01e and more precisely less than a fixed price computed from the
time it takes to grade a student’s submission. Currently, the infrastructure requires no
fee to be used and therefore pays nothing. Exercises are free software!

The equipment section shows which files should be available for students to practice
the exercise.

35

https://codegradx.org/CodeGradX/Resources/fw4ex.rng
https://codegradx.org/CodeGradX/Resources/Exercises/
https://codegradx.org/CodeGradX/Resources/fw4exRngDoc.pdf

36 CHAPTER 8. AUTHORS GUIDE

Questions are specified in the question section. It contains an expectation section
that specifies which files are expected from the student. If these files are not present,
then the student will be informed and no grading script will be run. The stem section
describes the stem of the question. As usual, the text looks like XHTML but with less
tags, look at the commented grammar for accurate details.

The autochecking section specifies where are the pseudo-copies and which mark they
should grade, see next Section for more details.

The grading section is where you specify the scripts to run in order to grade a stu-
dent’s submission. You may have a number of scripts per question, you may also
have scripts out of questions. Quite often an initial script my fix student’s files before
entering the scripts associated to the first question.

Sometimes to grade a student’s submission requires some libraries to be available.
The initializing section allows resources of an exercise to be prepared when the exercise
is deployed so well ahead before grading submissions. Compiling C or Java code that
does not depend on the copy of the students should be done in the initializing section.

There are tons of other options possible in this fw4ex.xml file, read the commented
grammar for more information.

8.2 Naming exercises

More than one name may qualify an exercise:

the long name identifies uniquely an exercise. It starts with one of the allowed prefixes
an author have. It should be a prononceable name often looking like fr.upmc.course.topic.
or cnam.mooc.socle. or fr.queinnec.christian. that is a series of words separated
by dots. Quite often the words are ordered from the most general to the most
specific. The long name is used by authors.

Some prefixes are reserved such as com.paracamplus or org.codegradx. Some pre-
fixes such as org.example. or tmp. are public and may be used and abused (that
is, overwritten) by anybody.

the nickname or short name is a single word that identifies an exercise within a col-
lection of exercises. This name is often used when displaying information to stu-
dents, for instance, a list of exercises to be done or an history of exercises’ results.
Quite often, the nickname is the last non numeric component of the long name.

the internal UUID qualifies a tgz that is a precise instance of an exercise. This UUID
is assigned to the exercise.tgz by the grading engine. This is the name used to
record grading reports in the database. An internal UUID is never re-used.

Students only have access to exercises via safe cookies, a safe cookie contains the
UUID of an exercise and not its long name.

An author can submit a new exercise.tgz with an already used long name. If the
exercise is successfully autochecked, it will get a fresh UUID and be available via its
own new safe cookie. At the end, a long name may be associated to more than one
exercise.tgz. If you want your students to use the new instance, you have to update the
safe cookie that led to the former instance in all the places where you mentioned the
long name. Usually there is a single landing page displaying the collection of exercises
to practice, this is the page to update.

Pay attention when re-using a long name since students are aware of short names,
they may take notice of long names but will probably never read those unreadable
UUIDs. Updating the stem of an exercise is not a problem, neither is adding new
pseudo-copies. However improving the grading scripts should not alter the total mark
and in the case where the new grading scripts change the marks of former jobs, it must

https://codegradx.org/CodeGradX/Resources/fw4exRngDoc.pdf
https://codegradx.org/CodeGradX/Resources/fw4exRngDoc.pdf
https://codegradx.org/CodeGradX/Resources/fw4exRngDoc.pdf

8.3. OVERALL DIRECTORY STRUCTURE 37

not lower these old marks or you might have problems with the students who do not
understand why their mark get lowered!

If you alter significatively the grading scripts, you should probably change the long
name (this is why long names often finish with a version number as in org.codegradx.js.min3.2)
and update the safe cookie that led to the former instance in all the places where you
mentioned the previous long name.

8.2.1 Naming new exercises

When an author submits a new exercise.tgz, the fresh exercise will be checked. A new
UUID is given to the exercise, the fw4ex.xml manifest file is checked, the pseudo-jobs
are marked and their resulting mark is compared to the expected mark. During these
checks, the exercise has a temporary long name prefixed with autochecked. prefix, after
decoding the manifest, its long name is prepended with a tmp. prefix. If everything went
well, the exercise is recorded in the central database with a tmp. prefix.

In the central database, some additional verifications are performed:

• The long name of the exercise must begin with one of the author’s authorized
prefixes.

• If a former exercise with the same claimed long name is already present then only
the owner of the exercise of that name can reuse that name.

If any of these verifications fail, the tmp. prefix is not stripped and the first authorized
author’s prefix is prepended to the long name.

Pay attention when a long name is associated to more than one exercise.tgz. Only
the UUID of these exercises differ and the most recent one is, quite often, choosed by
default.

8.3 Overall directory structure

An exercise is a tar gzipped file containing everything necessary for the student to prac-
tice the exercise and for the grading server to mark the files submitted by students.
It also contains non-regression tests to check whether the grading machine is able to
perform grading that is, it contains all the required or well-configured resources (pro-
grams, compilers, validators, grammars, data files, dictionaries, configurations, etc.)
needed to grade.

In favor of convention instead of configuration, it is strongly suggested that this
directory is structured as follows:

./fw4ex.xml

./data/

./tests/check.sh

./tests/1.data

./tests/2.data

./pseudos/null/

./pseudos/perfect/solution

./pseudos/half/solution

The data/ directory contains the files to ship to the student. These files are needed to
practice the exercise. This directory may not exist if no such files are needed. Files that
must be available by students must be declared in the equipment section in the fw4ex.xml

file. Here is an example of an equipment fragment where the data/lib.sh file is given to
the students:

38 CHAPTER 8. AUTHORS GUIDE

<equipment >
<directory basename=’data’>

<file basename=’lib.sh’/>
</directory >

</equipment >

The tests/ directory contains the files required to grade a job (or a pseudo-job). It
usually contains some shell (or other language) scripts to drive the grading and data
files that the student’s file have to process. The grading scripts may also directly appear
inlined within the fw4ex.xml descriptor.

The pseudos/ directory contains the pseudo-jobs to ensure non-regression. It is again
strongly suggested to have at least three pseudo-jobs (but at least two are mandatory):

null this pseudo-job contains nothing: its final mark should therefore be zero. If the
final mark is not zero then a student that does nothing already gains something!

perfect this pseudo-job contains the solution that is the required files behaving as
specified in the stem. The final mark should be equal to the total mark specified
in the fw4ex.xml description. If the final mark is not the expected one then it might
be the case that the grading machine is lacking some programs you need. Check
the report and complain to CodeGradX maintaineers!

half this pseudo-job contains incorrect answers and should get an intermediate grade
(nor zero, nor the total mark). This pseudo-job is important as it avoids two com-
mon pitfalls:

1. a bug in the grader may give the maximal mark to every non empty job. This
bug is not detected by the previous pseudo-jobs. This is particularly the case
if you compare answers to the perfect one. If the perfect solution fails to
produce the correct answer then, to compare it to itself always succeed and
always give the maximal mark!

2. it is advised to avoid all-or-nothing exercises. For instance, asking for a pro-
gram that only returns YES or NO is not advised since a program that always
return a constant answer will probably succeed half of the time and get half
of the maximal grade without much effort.

I usually add in the pseudos/ directory some students’ solutions that trigger bugs or
weird behaviours in the grader. This allows to make the exercise more robust as
time passes by.

Finally, the fw4ex.xml descriptor ties everything. It contains (or references where is)
the stem, the expected marks for the pseudo-jobs, etc.

8.4 Grading

There are at least two ways to grade. Grading may be done by comparison to a correct
solution. It may also be done by inspection of the result.

8.4.1 Grading by comparison

Grading by comparison is a process that usually passes through the following steps:

1. Check expectations — Verify that the files expected from the student are present,
non empty, executable, etc. The sole presence of files may be specified in the
fw4ex.xml descriptor.

8.5. AUTHOR’S SCRIPT 39

2. Feedback — Make student’s files appear in the grading report. This is useful for
the student since he may check that these are really the files he submitted. It is
also useful for the author of the exercice since the report is self-contained.

3. Loop — For all test cases (and it is better to know how many of them there are):

(a) Setup — Set up the test that is: populate then jump to a directory, uncom-
press some data files, etc.

(b) RunStudent — Run the student’s programs

(c) ShowStudentAnswer — Show the results of the student’s programs

(d) NormalizeStudentAnswer — Normalize the results that is remove superflu-
ous spaces or newlines, etc.

(e) Compare — Gauge the normalized result. There are at least two possibilities:
an oracle or a comparison to a correct solution. Using a comparison is often
done as follows:

i. RunAuthor – Run the author’s programs
ii. ShowAuthorAnswer — Show the results of the author’s program.
iii. NormalizeAuthorAnswer — Normalize the results as before.

(f) EvaluateGain — Determine the final grade for this test case. This phase may
be disseminated through the previous phases but it is cleaner to separate this
phases so the ponderation may evolve independently.

To help authors, some libraries exist to factorize common tasks. These are bash li-
braries that should be source-d. Even more, a set of configurable patterns are provided
for grading reports. Depending on the kind of exercises you want to design, the pro-
gramming languages used, you may start with one of the following patterns and tailor
it to your needs.

8.4.2 Grading by inspection

Grading by inspection is almost similar. In the above enumeration the Compare step is
performed by a dedicated script that checks whether some properties hold or not.

8.4.3 Marks

Usually, I mark between 0 and 1. This is particularly useful if you want to normalize
the marks of a series of exercises. However, I often display marks with a markFactor of
100 since students prefer getting 100/100 rather than 1/1!

If you have only one exercise for instance an examination, marks can go up to 72 or
whatever highest mark is convenient.

8.5 Author’s script

An author script follows very simple convention:

• The stdout will be sent to the student, the stderr will be sent to the author (it may
also be read by CodeGradX maintaineers).

• The stdout must be a valid XML document so pay attention to close your tags (even
when scripts are abruptly terminated!). The CodeGradX platform tries to tidy this
XML but tidying cannot fix all problems!

40 CHAPTER 8. AUTHORS GUIDE

• The script runs in the HOME directory of a student under the identity of this
student. Therefore it may not alter the files owned by the author.

• The script must take great care of the student’s files since it may modify them (at
least, it has the right to). It is safer to avoid, where possible, any modification of
the HOME directory. Use TMPDIR for temporary files (don’t use /tmp directly as it
is not safe). The CodeGradX platform creates one TMPDIR per job so every job has
its own unshared space.

• Always confine the student’s programs! Remember that author’s programs are
also confined so what you give to the student (CPU, streams) is taken from your
share.

• Always pass your data through transcodeCarefully to avoid generating bad XML.

8.6 Environment

There are a number of variables that may be used by authors’ scripts. Except for TMPDIR

all the other variables, prefixed by FW4EX_ should be absolutely hidden from student’s
programs (this is normally ensured by the use of the fw4ex_confine library function).

TMPDIR This variable specifies the directory to use for temporary files. Don’t use /tmp,
you may not have the right to! This temporary directory will be removed at the
end of the job but you may use it during the whole job therefore you may store
information in it from one question to the other.

FW4EX_LIB_DIR This variable contains the name of the directory that contains the shell
library for authors. Most often, an author’s script starts with:

source $FW4EX_LIB_DIR/basicLib.sh
source $FW4EX_LIB_DIR/moreLib.sh

FW4EX_BIN_DIR This variable contains the name of the directory that contains some util-
ities for authors though most of these utilities are better used via shell functions
from the basicLib.sh library.

FW4EX_EXERCISE_DIR This variable contains the name of the directory that contains the
inflated exercise. This directory contains the fw4ex.xml file and all the other files
packed in the exercise tar gzipped file.

FW4EX_JOB_ID This variable contains the name of the current job. This variable is useless
for authors and is only needed by the fw4ex_win command.

FW4EX_QUESTION_NAME This variable contains the name of the current question (if the script
is embedded within a question element, of course).

Additional variables may be pathnames to other resources, for instance, for Java
(see Section 8.11.1):

FW4EX_JUNIT_JAR is the path leading to the currently installed JUnit jar (currently 4.11).
This JUnit is wrapped with JCommander 1.27 (from Cedric Beust) and some ad-
ditional TestRunner making easier to mark with JUnit.

FW4EX_JAVA_BIN is the path leading to some helper classes.

8.7. UTILITIES 41

8.7 Utilities

There are two complex utilities: win and confine and a simpler one: transcodeCarefully

upon which rest many library functions (to be seen in the next sections). These utili-
ties are often used indirectly via the fw4ex_win, fw4ex_confine and fw4ex_transcodeCarefully

library functions.

8.7.1 win

win - produce a mark

SYNOPSIS

A single argument is a formula to evaluate:

win.pl 1/2 # yields 0.5
win.pl 1.3/3 # yields 0.43

More than one argument is a parameterized shape followed by a number. Here the
shape is triangular:

win.pl triangular 0 10 50 100 -- 0 # yields 0
win.pl triangular 0 10 50 1000 -- 5 # yields 500
win.pl triangular 0 10 50 1000 -- 10 # yields 1000
win.pl triangular 0 10 50 1000 -- 30 # yields 500
win.pl triangular 0 10 50 1000 -- 50 # yields 0

Formulas may be used everywhere:

win.pl triangular 1-1 100/10 100/2 ’10*100’ -- ’7*11’ # yields 0

DESCRIPTION

This program takes some arguments and produces a mark onto its standard output. It
basically takes the description of a function (say f) followed by a number (say x) then
computes and emits f(x).

The emitted mark is always limited to at most two decimals.
Some shapes are predefined. They are described below.

SHAPE equal

The equal shape is a kind of finite Dirac. The command looks like:

win.pl equal xmed ymax -- x

If x is equal to xmed then the ymax mark is emitted otherwise the won mark is 0.

SHAPE triangular

The triangular shape looks like:

y
^
|
ymax +
| / \

42 CHAPTER 8. AUTHORS GUIDE

| / \
| / \
| / \
+----min---med---max----->x

The command looks like:

win.pl triangular xmin xmed xmax ymax -- x

The maximal mark is ymax and is won when x is equal to xmed. Out of the interval
[xmin, xmax], the emitted mark is 0. Otherwise the won mark is linearly interpolated.

One may parameterize the shape with xmin = xmed or xmed = xmax. Use the shape
equal when xmin = xmed = xmax.

SHAPE rectangular

The rectangular shape looks like:

y
^
|
ymax +----------+
+----min---------max----->x

The command looks like:

win.pl rectangular xmin xmax ymax -- x

The maximal mark is ymax and is won when x is between xmin and xmax. Out of the
interval [xmin, xmax], the emitted mark is 0.

8.7.2 confine

The confine program runs a program in a restricted context with few if any rights. It
is possible to limit the duration, the number of emitted characters on the stdout or
stderr, to mask variables and so on. See also the fw4ex_confine library function from the
basicLib.sh library, see 8.8.2 for further details.

Some terse documentation may be obtained with the --help option:

The numerous error codes may be obtained with the --error-codes option:

confine 2013Mar15 09:56
FW4EX error codes:

209 Unknown option:
210 Missing program name!

* 211 Failed exec()!
212 Missing equal sign in environment!
213 Failed setsid()!
214 Missing number in option!
215 Extraneous characters after number in option!
216 Received unknown signal!
217 Confined process’s unknown exit value
218 Failed sigaction() - SIGXXX

8.7. UTILITIES 43

219 Failed setitimer()!
220 Failed waitpid()!
221 Failed fork()!

* 222 Confined process did not exit by itself!
223 Failed pipe() - stdXXX
224 Failed dup2() - child stdXXX
225 Failed close() - child stdXXX
226 Failed read()!
227 Failed write()!

* 228 Too much output!
229 Weird child death!
230 Failed malloc()!
231 Failed fopen() - for XXX!
232 Failed unsetenv()!
233 Failed reset groups

The exit value of this program may be:
211 if the program cannot be started with exec().
222 if the confined program was killed because it exceeds its specified

duration
228 if the confined program was killed because it exceeds the number

of characters to be output on its stdout or stderr streams.
the exit value of the confined process if it terminates naturally.

Except 211, 222 and 228, exit values in the range 209-232 are internal
errors that normally should not be seen!

The confine command takes a lot of options followed by a -- option followed by the
command to be confined. Here are some simple uses to illustrate some possible con-
finements:

% confine --exit-file errcode -- date --rfc-2822
Thu, 18 Dec 2008 20:34:09 +0100
% cat errcode
0%
% date; confine --cpu=1 --exit-file errcode -- sleep 10 ; date ; cat errcode
Thu Dec 18 21:04:16 CET 2008
Thu Dec 18 21:04:17 CET 2008
222
% confine --maxout=32 --exit-file errcode -- yes coucou ; cat errcode
Thu Dec 18 21:05:14 CET 2008
coucou
coucou
coucou
coucou
couc228
% confine --maxout=32 --exit-file errcode -- laskdjfa ; cat errcode
211%

The errcode file contains the exit code of the confined command. An exit value pro-
duced by the confined program is not followed by a newline. An exit value produced by
the confiner itself (i.e., the confine command) is followed by a newline.

8.7.3 transcodeCarefully

transcodeCarefully - sanitize a stream of chars into XML/UTF8

44 CHAPTER 8. AUTHORS GUIDE

SYNOPSIS

transcodeCarefully.pl < someFile
cat someFile | transcodeCarefully.pl --line

DESCRIPTION

This program processes its standard input and convert it into a stream of characters
suitable to be embedded in an XML UTF-8-encoded document. Quite often normal char-
acters just pass through. Non-printable characters are converted into flagged printable
characters. XML special characters are converted into the named equivalent entities.
These special characters are the apostrophe, the double quote, the less than and greater
than signs.

There is an option �lineNumber that numbers the lines. The numbering style is
currently not configurable. Line numbers are wrapped inside a lineNumber element so
it may be styled with CSS style sheets.

Another option is the total number of incorrect UTF-8 bytes that can be accomo-
dated. More than this number (100 by default), these incorrect bytes no longer appear
in the output. If the limit is reached, the package exits with a bad error code.

The input is expected to be UTF-8 encoded. If some bytes are encountered that
do not respect UTF-8 they are emitted in hexadecimal with a leading funny Unicode
character.

There is no attempt to check whether the swallowed or emitted XML is well-formed
or valid.

8.7.4 headtail.sh

This utility reads its input stream and outputs only the N first lines and the N last
lines. By default, N is 5. For instance,

% for letter in a b c d e; do echo $letter ; done | headtail.sh -1
a
e

8.8 Libraries

This section explains the various libraries, it focuses on the main utilities. Some li-
braries (in the Languages directory) are tailored for specific programming languages.
Other libraries (in the Patterns directory) correspond to usual cases when testing pro-
grams. Quite often, an author sources the basicLib.sh library then the moreLib.sh library.
The other ones are only sourced if required.

These author libraries are available online. They are useful for authors if they want
to test their exercises before submitting to CodeGradX.

8.8.1 Local checks

In order to check grading scripts on a development machine before submitting an exer-
cise to the CodeGradX infrastructure, download the author libraries in some directory,
say /tmp/authorlib then if we suppose that the current directory contains the manifest
i.e., the fw4ex.xml file, configure the following environment variables:

export FW4EX_EXERCISE_DIR=$(pwd)
export FW4EX_LIB_DIR=/tmp/authorlib
export FW4EX_BIN_DIR=/dev/null

https://codegradx.org/CodeGradX/Resources/authorlibraries.tgz
https://codegradx.org/CodeGradX/Resources/authorlibraries.tgz

8.8. LIBRARIES 45

export FW4EX_JOB_ID=’abcdefghijklmnopqrstuvwxyz ’
export TMPDIR=/tmp/mygradingresults
mkdir -p $TMPDIR

The grading script must source the cxshim.sh library, that library provides light and
unsafe equivalents of the binary executables confine and transcode.

And run your grading script, say mygradingscript.sh, for the perfect pseudo-job. The
job report will appear on the standard output.

cd pseudos/perfect
$FW4EX_EXERCISE_DIR/mygradingscript.sh

You may alternatively use the two next template scripts to ease authors’ tasks. These
template scripts are stored in the Dev directory of the author libraries. You may need to
edit them to suit your configuration.

localEval.sh This script does not need a running VMauthor virtual machine. It only
uses shell capabilities and you may edit it to suit your specific needs. As above, we sup-
pose that test/check.sh is the grading script, we also suppose that the current directory
contains the pseudo submissions in the pseudos directory. You may get the job report
for one pseudo job, say half. with:

./localEval.sh -p half

You may check all pseudo submissions that is all the subdirectories of the pseudos

directory with the -a option:

./localEval.sh -a

The associated job report will be produced on the standard output. If your grading
script is not named test/check.sh then you may specify its real name with

./localEval.sh -p half -s mygradingscript.sh

Remember that the confine and transcode binary executable are only simulated (if
your grading script source the FW4EX_LIB_DIR/cxshim.sh library) so duration and output
are not controlled at all: you may shoot yourself in the foot!

VMauthorEval.sh This template script checks an exercise with a running VM for au-
thors, see 10.5. It will check the manifest, recreate the tgz, submit it and wait for
results. All results are stored in a freshly created directory.

The script needs to know where is the codegradxvmauthor.js script see 10.4, the gram-
mar fw4ex.rng and the IP number of the VMauthor virtual machine. You may edit the
template with those settings or specify them as environment variables.

GRAMMAR=../Grammars/fw4ex.rng ./VMauthorEval.sh

If the exercise can be deployed, a successful final message will appear.

8.8.2 basicLib.sh

This is the most basic library for authors. It defines a number of useful functions. The
name of these functions is prefixed by fw4ex_.

fw4ex_transcode_carefully

This is a filter to transcode weird characters into XML and UTF-8 acceptable characters.
Remember that every string (especially the strings coming from the student) going to
appear in the grading report must pass through this filter so the generated XML is valid.

https://codegradx.org/CodeGradX/Resources/authorlibraries.tgz

46 CHAPTER 8. AUTHORS GUIDE

Several options are possible: -l numbers the lines. --g=N limits the output to N
characters: if the output overflows, a series of three characters is emitted. --b=N limits
the number of non-UTF8 bytes (the error code is 1). --s=N cuts lines every N characters.

The FW4EX_TRANSCODE_CAREFULLY_FLAGS variable may be set to add permanently op-
tions to fw4ex_transcode_carefully.

fw4ex_transcode_carefully () {
expand | $FW4EX_BIN_DIR/transcode $FW4EX_TRANSCODE_CAREFULLY_FLAGS "$@"

}

For instance, if you want to show to the student the command he submitted, use
the following snippet:

echo $OPTIONS | fw4ex_transcode_carefully

fw4ex_win

This function emits a partial mark. These partial marks will be summed to form the
final mark. A mark is a unique argument, a string, that may contain an arithmetic
expression. Only two decimals will be retained for the partial mark to emit.

fw4ex_win() {
local POINT=$($FW4EX_LIB_DIR/win.pl "$@")
fw4ex_generate_fw4ex_element formula: "$@"
cat <<EOF

<mark key=’$FW4EX_JOB_ID’ value=’$POINT’>$POINT</mark>
EOF
}

Here are some examples of wins:

fw4ex_win 1 # to win 1
fw4ex_win 1/3 # to win 0.33
fw4ex_win 3-\(5.6*0.5\) # to win 0.2
fw4ex_win "3 - (5.6*0.5)" # to win 0.2

fw4ex_confine

The fw4ex_confine function allows an author to run some student’s code in a confined
mode so the student’s code cannot exceed some limits (duration, output size (stdout or
stderr)). Normally, an author should never run student’s code out of a confined mode!

Pay attention, that the author’s scripts are themselves confined by the FW4EX plat-
form so an author may only devote resources to student’s scripts within his own limits.

Normally, the maxcpu, maxout and maxerr limitations are already set for the au-
thor’s script. If you want to set more precise limits (or hide additional environement
variables) to run the student’s script, use the FW4EX_STUDENT_LIMITS variable, for in-
stance:

FW4EX_STUDENT_LIMITS=’--maxout=5k --cpu=1’

The exit code of the confined script will be stored in the TMPDIR/.lastExitCode file
(initially filled with 211). The code 222 is returned if the confined program was killed
because it exceeds its specified duration. The code 228 if the confined program was
killed because it exceeds the number of characters to be output on its stdout or stderr
streams. Otherwise the the exit value of the confined process if it terminates naturally.
See the confine utility for more details.

8.8. LIBRARIES 47

Please consider using fw4ex_run_student_command or fw4ex_run_teacher_command in-
stead from the comparisonLib.sh library.

FUTURE DEBUG retirer -v si present

fw4ex_confine() {
#fw4ex_generate_xml_comment "FW4EX_STUDENT_LIMITS=$FW4EX_STUDENT_LIMITS"
echo -n 211 > $TMPDIR/.lastExitCode
$FW4EX_BIN_DIR/confine \

--exit-file $TMPDIR/.lastExitCode \
$FW4EX_STUDENT_LIMITS \
--fw4ex-hide \
-- "$@"

}

fw4ex_generate_xml_comment

The fw4ex_generate_xml_comment function is a deprecated internal technical function
used to insert additional information within grading report not immediately seeable by
students. Use it only for debug as it may leak useful information towards students.

The fw4ex_generate_xml_comment function generates a comment paying attention not
to generate a sequence of two dashes (--) within the comment.

fw4ex_generate_xml_comment () {
echo "<!--" $(echo "$@" | sed -r ’s/-{2,}/-/g’ | \

fw4ex_transcode_carefully) "-->"
}

fw4ex_generate_fw4ex_element

This is an internal technical function that emits an FW4EX element. These elements are
used to insert additional information within grading report and to resynchronize XML
generation in case of generation problems.

fw4ex_generate_fw4ex_element () {
echo "<FW4EX what=’" $(echo "$@" | fw4ex_transcode_carefully) "’/>"

}

8.8.3 moreLib.sh

This library defines additional functions that may be useful for authors. This file defines
some internal functions that are not documented.

fw4ex_ensure_final_newline

This function appends a final newline to a file if this new newline is missing. This is
sometimes useful to sanitize student’s data files.

fw4ex_ensure_final_newline () {
local FILE="$1"
local CHAR=$(tail --bytes=1 < "$FILE" | od -w1 -c -An)
case "$CHAR" in

’\n’)
return 0
;;

*)

48 CHAPTER 8. AUTHORS GUIDE

echo >>"$FILE"
return 1
;;

esac
}

fw4ex_check_existence

This function checks whether a file exists (ie whether the student submits this file), is
readable and not empty. Aborts (with the content of the ABORT variable) the current
script if the file does not exist. Another setting for ABORT is return.

Verbalizes the check while doing it.

fw4ex_check_existence() {
local ABORT=${ABORT:-exit}
local FILE="$1"

if [[! -f "$FILE"]]
then

case "$FW4EX_LANG" in
fr)

cat <<EOF
<error>Je ne trouve pas de fichier nommé <code>$FILE</code>! </error>
EOF

;;
en|*)

cat <<EOF
<error>I cannot find a file named <code>$FILE</code>! </error>
EOF

;;
esac
$ABORT 51

fi

if [[! -r "$FILE"]]
then

chmod a+r "$FILE"
fi

if [[! -s "$FILE"]]
then

case "$FW4EX_LANG" in
fr)

cat <<EOF
<error>Votre fichier nommé <code>$FILE</code> est vide! </error>
EOF

;;
en|*)

cat <<EOF
<error>Your file, named <code>$FILE</code>, is empty! </error>
EOF

;;
esac
$ABORT 52

fi
}

8.8. LIBRARIES 49

fw4ex_show_directory

List the given directory (by default, the current directory).

fw4ex_show_directory () {
local DIR="$1"
if [[-n "$DIR"]]
then

case "$FW4EX_LANG" in
fr)

echo "<p> Voici le contenu du répertoire <code>$DIR</code>: <pre>"
;;

en|*)
echo "<p> Here is the content of the <code>$DIR</code>

directory: <pre>"
;;

esac
(cd $DIR/ && ls -RgG) | fw4ex_transcode_carefully

else
case "$FW4EX_LANG" in

fr)
echo "<p> Voici le contenu de votre répertoire: <pre>"
;;

en|*)
echo "<p> Here is the content of your directory: <pre>"
;;

esac
ls -RgG | fw4ex_transcode_carefully

fi
echo "</pre></p>"

}

fw4ex_compare_strings

Compare two strings using Levenshthein distance that is, the number of insertion-
s/deletion/substitution needed to change the first (student’s) string into the second
(author’s) one. Return that number in order to compute a partial mark. Don’t give too
long strings or the computation may take time.

fw4ex_compare_strings() {
local STUDENT="$1"
local TEACHER="$2"
if false
then

Il y a un probleme la-dessous (test 103c ???)
perl -e "use Text::Levenshtein qw(distance);

print distance(’$STUDENT’, ’$TEACHER’); "
else

Pure perl FUTURE a confiner a 5 secondes max ???
$FW4EX_LIB_DIR/levenshtein.pl "$STUDENT" "$TEACHER"

fi
}

50 CHAPTER 8. AUTHORS GUIDE

fw4ex_compare_lines

Compare two files counting the number of insertions, deletion or substitution needed
to change the first (student’s) file into the second (author’s) one. Return that number
in order to compute a partial mark. Don’t give too much lines or the computation may
take time.

Additionnally, you may add other options to diff in the third argument. If the third
argument is missing, it defaults to the value of the global variable DIFF_AUTHOR_FLAGS.

fw4ex_compare_lines() {
local STUDENT="$1"
local TEACHER="$2"
local DIFF_AUTHOR_FLAGS="${3:-$DIFF_AUTHOR_FLAGS}"
local DIFF_FLAGS=’--unchanged-line-format= --old-line-format=O --new-line-format=N’
local RESULT=$(diff $DIFF_AUTHOR_FLAGS $DIFF_FLAGS $STUDENT $TEACHER)
#echo "<!-- $RESULT -->"
echo ${#RESULT}

}

fw4ex_compare_integers

Compare two integers (for example two exit values). Return the distance between them
(probably not a very meaningful distance for exit values) in order to compute the partial
mark.

fw4ex_compare_integers() {
local STUDENT="$1"
local TEACHER="$2"
echo $(($TEACHER - $STUDENT)) | sed -re ’s/-//’

}

The <expectations> element from the fw4ex.xml file automatizes the verification that
the expected files are indeed present. The generated code uses the following four func-
tions. All these functions only emit a text, they should not use ’exit’! An exit will
automatically be performed after reporting a miss.

fw4ex_report_present_file

Generate a FW4EX comment telling if a file is present otherwise generate nothing.

fw4ex_report_present_file() {
local FILE="$1"
fw4ex_generate_fw4ex_element $FILE is present

}

fw4ex_report_missing_file

Notify the user that an expected file is missing. Returns true only if the file is really
missing.

fw4ex_report_missing_file() {
local FILE="$1"
if [[-f $FILE]]
then

false

8.8. LIBRARIES 51

else
case "$FW4EX_LANG" in

fr)
cat <<EOF

<error>Je ne trouve pas de fichier nommé <code>$FILE</code>! </error>
EOF

;;
en|*)

cat <<EOF
<error> I cannot find a file named <code>$FILE</code>! </error>
EOF

;;
esac
true

fi
}

fw4ex_report_present_directory

Generate a FW4EX comment telling if a directory is present otherwise generate nothing.

fw4ex_report_present_directory() {
local DIR="$1"
fw4ex_generate_fw4ex_element $DIR is present

}

fw4ex_report_missing_directory

Notify the user that an expected directory is missing. Returns true only if this directory
is really missing.

fw4ex_report_missing_directory() {
local DIR="$1"
if [[-f $DIR]]
then

false
else

case "$FW4EX_LANG" in
fr)

cat <<EOF
<error>Je ne trouve pas de répertoire nommé <code>$DIR</code>! </error>
EOF

;;
en|*)

cat <<EOF
<error> I cannot find a directory named <code>$DIR</code>! </error>
EOF

;;
esac
true

fi
}

52 CHAPTER 8. AUTHORS GUIDE

8.8.4 imgLib.sh

This library defines additional functions to insert images within the grading report.

fw4ex_insert_image

This function embeds an image (designated as a file) within the grading report. The
first argument is the file containing the image (png, jpeg images are well handled),
the second argument is the text serving as ALT attribute. Attention, there are certain
restriction on the size of the image in some browsers.

8.8.5 makefileLib.sh

This library is used when dealing with make or gcc. It defines a number of useful
functions. The name of these functions is prefixed by fw4ex_.

fw4ex_is_relocatable

This predicate takes a filename as argument and checks whether it is a relocatable file
(that is a .o file) or not. The check is made with the file utility (pay attention to the
current LANG value).

fw4ex_is_relocatable () {
local FILE="$1"
case "$(file $FILE)" in

relocatable)
true
;;

*)
false
;;

esac
}

fw4ex_is_library

This predicate takes a filename as argument and checks whether it is a library file (that
is, a .a file). The check is made with the file utility (pay attention to the current LANG
value).

fw4ex_is_library () {
local FILE="$1"
case "$(file $FILE)" in

archive)
true
;;

*)
false
;;

esac
}

8.8. LIBRARIES 53

fw4ex_is_symbol_defined

This predicate checks whether a file (that may be given as argument to the nm utility)
defines a symbol.

fw4ex_check_is_symbol_defined () {
local FILE="$1"
local NAME="$2"
cat <<EOF

<p>Je cherche si <code>$FILE</code> définit bien
le nom <code>$NAME</code>.
EOF

if nm "$FILE" | fgrep -q "T $NAME"
then

echo "C’est bien le cas!"
else

nm $file
cat <<EOF

<error>Le symbole <code>$NAME</code> n’est pas défini dans le
fichier <code>$FILE</code>!</error>
EOF

fi
echo "</p>"

}

fw4ex_has_type

This predicate takes a filename and a string (the expected type of the file) and checks
whether this file has this type. The type is determined with the file utility. For example,
to check whether a file is a TeX DVI file, one should write

fw4ex_has_type someFile ’TeX DVI’

Pay attention, the file utility depends on the current LANG.

fw4ex_has_type () {
local FILE=$1
local TYPE="$2"
if [[! -f $FILE]]
then

cat <<EOF
<error>
Le fichier <code>$FILE</code> n’existe pas!
</error>
EOF

false
else

#local MAGIC_NUMBER=$(od -Anone -c -N2 $FILE | tr -d ’ ’)
#if [["$MAGIC_NUMBER" = ’367002’]]
file $FILE > $TMPDIR/file
if grep -qi "$TYPE" < $TMPDIR/file
then

true
else

cat <<EOF

54 CHAPTER 8. AUTHORS GUIDE

<error>
Votre fichier <code>$FILE</code> n’est pas un fichier de
type <code>$TYPE</code>, l’utilitaire <code>file</code> dit que c’est
<code>$(fw4ex_transcode_carefully < $TMPDIR/file)</code>.
</error>
EOF

false
fi

fi
}

fw4ex_creation_hour

This small and internal function returns the creation time of a file but only the hour,
minute and second part that is, something like 16:10:53.000000000. This is useful to
check whether make recreates a file or not.

fw4ex_creation_hour () {
local FILE="$1"
ls --full-time "$FILE" | awk ’{print $7}’

}

fw4ex_is_impacted

This internal predicate takes two filenames: a target and a requisite and checks whether
the target is rebuilt when the requisite is touched. This proves that the target is indeed
dependent on the requisite.

fw4ex_is_impacted () {
local TARGET="$1"
local REQUISITE="$2"
local OLDHOUR="$(fw4ex_creation_hour "$TARGET")"
sleep 1 # less than 1 second may be ignored
touch "$REQUISITE"
fw4ex_run_student_command $MAKE "$TARGET"
local NEWHOUR="$(fw4ex_creation_hour "$TARGET")"
["$OLDHOUR" != "$NEWHOUR"]

}

fw4ex_check_impact

This function takes, as arguments, a filename (a target) followed by a number of requi-
sites. It checks and verbalizes (in French) whether the target depends on the requisite
with help of the fw4ex_is_impacted predicate.

fw4ex_check_impact () {
local TARGET="$1"
shift
local RESULT=true
for REQUISITE in "$@"
do
cat <<EOF

<p>
Je vérifie si <code>$TARGET</code> dépend de
<code>$REQUISITE</code>. Je "touche" (comme l’on dit)

8.8. LIBRARIES 55

<code>$REQUISITE</code> puis je demande à reconstruire
<code>$MAKE $TARGET</code>.
EOF

fw4ex_is_impacted "$TARGET" "$REQUISITE"
local STATUS=$?
fw4ex_show_student_raw_result
if [[$STATUS -eq 0]]
then

echo "Le fichier <code>$TARGET</code> a été reconstruit. "
else

cat <<EOF
Le fichier <code>$TARGET</code> n’a pas changé!
Il ne dépend donc pas de <code>$REQUISITE</code>.
EOF

RESULT=false
fi

done
echo "</p>"
$RESULT

}

fw4ex_clean_target

Before testing that make builds a file, it is safer to be sure that the intended file does not
exist. This function removes all the mentioned targets and verbalizes this fact.

fw4ex_clean_target () {
for FILE in "$@"
do
if [[-f "$FILE"]]
then

cat <<EOF
<p>Je vois que vous avez un fichier <code>$FILE</code>,
je l’efface.</p>
EOF

rm -f "$FILE"
fi

done
}

fw4ex_make_once

This function takes a target and runs the make command to build or rebuild that target.
If FW4EX_SHOW_ERROR_CODE is true, the error code of the make is displayed if erro-
neous. The make command is run with fw4ex_run_student_command and as such leaves
the stdout, stderr and error code as usual.

FW4EX_SHOW_ERROR_CODE=false

fw4ex_make_once () {
cat <<EOF

<p>Avant de demander l’exécution de <code>$MAKE $@</code>, je demande
à voir ce qui va être fait avec <code>$MAKE -n --no-print-directory $@</code>:
<pre>
EOF

56 CHAPTER 8. AUTHORS GUIDE

$MAKE -n --no-print-directory "$@" | fw4ex_transcode_carefully
cat <<EOF

</pre>
J’exécute maintenant la commande <code>$MAKE $@</code>.
EOF

fw4ex_run_student_command $MAKE "$@"
local errcode=$(cat $TMPDIR/.lastExitCode)
if ${FW4EX_SHOW_ERROR_CODE:-false}
then

if [[$errcode -ne 0]]
then

cat <<EOF
<warning>Votre commande <code>$MAKE $@</code> a retourné le code
$errcode.</warning>
EOF

fw4ex_verbalize_error_code $TMPDIR/.lastExitCode
fi

fi
echo "</p>"
return $errcode

}

fw4ex_re_make

This predicate takes a target and rebuilds it with make. It returns true iff nothing is
done that is, the target is up to date. This predicate verbalizes its actions in French.

fw4ex_re_make () {
local TARGET="$1"
shift
local OLDHOUR="$(fw4ex_creation_hour $TARGET)"
cat <<EOF

<p> Je demande à nouveau à voir ce qui sera fait avec la commande
<code>$MAKE -n --no-print-directory $TARGET $@</code>: <pre>
EOF

$MAKE -n --no-print-directory $TARGET "$@" | \
tee $TMPDIR/result.s | fw4ex_transcode_carefully

cat <<EOF
</pre></p>
EOF

If the target is already up to date, don’t run make!
if grep -Eq "^make:.*$TARGET.*(is up to date|est .* jour)" < $TMPDIR/result.s
then :
else

cat <<EOF
<p>J’exécute maintenant la commande <code>$MAKE $TARGET $@</code>.</p>
EOF

fw4ex_run_student_command $MAKE $TARGET "$@"
fw4ex_show_student_raw_result
if ${FW4EX_SHOW_ERROR_CODE:-false}
then

local errcode=$(cat $TMPDIR/.lastExitCode)
if [[$errcode -ne 0]]
then

8.8. LIBRARIES 57

cat <<EOF
<warning>Votre commande <code>$MAKE $TARGET $@</code> a retourné le code
$errcode.</warning>
EOF

fi
fi

fi

if grep -Eq "^make:.*$TARGET.*(is up to date|est .* jour)" < $TMPDIR/result.s
then

cat <<EOF
<p>Le fichier <code>$TARGET</code> est bien à jour et rien n’a été
effectué: c’est parfait.</p>
EOF

true
else

local NEWHOUR="$(fw4ex_creation_hour $TARGET)"
if [["$OLDHOUR" == "$NEWHOUR"]]
then

cat <<EOF
<p> L’utilitaire <code>$MAKE</code> a refait quelque-chose mais la date
de création de la cible <code>$TARGET</code> est toujours la même. </p>
EOF

true
else

cat <<EOF
<error>Le fichier <code>$TARGET</code> a changé d’heure de
création. C’était $OLDHOUR, c’est maintenant $NEWHOUR.</error>
EOF

false
fi

fi
}

fw4ex_show_current_directory

Display the content of the current directory. This is often useful before running a make
command. This command also stores the content of the directory in the TMPDIR/ls.before
file.

fw4ex_show_current_directory () {
echo "<p> Voici le contenu du répertoire courant: <pre>"
ls -gG | fw4ex_transcode_carefully
ls -1 > $TMPDIR/ls.before
echo "</pre></p>"

}

fw4ex_show_current_directory_after

Display the content of the current directory. This is often useful after running a make
command. This command also stores the content of the directory in the TMPDIR/ls.after
file.

fw4ex_show_current_directory_after () {
echo "<p> Voici le nouveau contenu du répertoire courant: <pre>"

58 CHAPTER 8. AUTHORS GUIDE

ls -gG | fw4ex_transcode_carefully
ls -1 > $TMPDIR/ls.after
echo "</pre></p>"

}

8.8.6 comparisonLib.sh

This library defines functions used in various patterns. It requires the basicLib.sh
and moreLib.sh libraries. All these functions have names prefixed by fw4ex_, they emit
French sentences in UTF-8. Most of these functions are very simple so their source is
given without much explanations.

fw4ex_show_command_and_options_from_file

fw4ex_show_command_and_options_from_file () {
local COMMAND="$1"
local OPTIONS="$2"
cat <<EOF

<p>
Voici donc la commande que vous avez choisie:
<pre>
$(echo "$COMMAND $(cat $OPTIONS)" | fw4ex_transcode_carefully)
</pre></p>
EOF
}

fw4ex_show_script

Display a script but don’t display files that are not recognized as text files. Also generate
a special FW4EX tag in order to build an index of shown files.

FW4EX_SHOW_SCRIPT_PREFIX_GOOD="Voici donc votre réponse:"
fw4ex_show_script () {

local SCRIPT="$1"
if [[0 -eq $(wc -c < "$SCRIPT")]]
then

echo "<p><error>Votre fichier est vide!</error></p>"
else

case "$(file "$SCRIPT")" in
text)
fw4ex_generate_fw4ex_element "file:///$SCRIPT"
cat <<EOF

<p>
$FW4EX_SHOW_SCRIPT_PREFIX_GOOD
<pre>
EOF

fw4ex_transcode_carefully --l < "$SCRIPT"
cat <<EOF

</pre></p>
EOF

;;
*)

cat <<EOF
<warning> Votre fichier

8.8. LIBRARIES 59

<code>$(echo $SCRIPT | fw4ex_transcode_carefully)</code>
ne semble pas être un texte,
l’utilitaire <code>file</code> dit en effet que c’est un
<code>$(file "$SCRIPT" | fw4ex_transcode_carefully)</code>:
je ne tente donc pas de vous le montrer. </warning>
EOF

;;
esac

fi
}

fw4ex_check_executability

fw4ex_check_executability () {
local SCRIPT="$1"
if [[-x "$SCRIPT"]]
then

return 0
else

cat <<EOF
<error> L’énoncé demandait un script exécutable ce que n’est pas votre
réponse. Je rectifie les droits au passage. </error>
EOF

chmod a+x "$SCRIPT"
return 1

fi
}

fw4ex_check_options_prefixed_by_command

fw4ex_check_options_prefixed_by_command () {
local COMMAND="$1"
local OPTIONS="$2"
local OPT=$(cat $OPTIONS)
case "$OPT" in

"$COMMAND "*)
cat <<EOF

<warning> L’énoncé demandait les options à placer après la
commande <code>$COMMAND</code>, vous avez néanmoins fait précéder ces
options du nom de cette commande ce qui n’est pas conforme à la consigne!
Le reste sera probablement donc erroné. À l’avenir, lisez
soigneusement les énoncés!
</warning>
EOF

;;
esac

}

fw4ex_show_data_file

This function displays the content of a data file. It does not show the name of the data
file only its content. It receives as first argument, the rank of the data file among the
data files.

60 CHAPTER 8. AUTHORS GUIDE

fw4ex_show_data_file () {
local FLAG=
if ${FW4EX_NUMBER_LINE:-false}
then FLAG=--l
fi
local I="$1"
local DATAFILE="$2"
fw4ex_generate_fw4ex_element ’Essai’ $I $(date -u +’%Y-%m-%dT%H:%M:%SZ’)
if [[-z "${DATAFORMATTER}"]]
then

echo "<p> Voici le contenu du fichier $I à traiter: <pre>"
fw4ex_transcode_carefully $FLAG < $DATAFILE
echo "</pre></p>"

else
cat <<EOF

<p> Voici le contenu du fichier $I à traiter (que j’affiche avec
<code>$DATAFORMATTER</code>): <pre>
EOF

${DATAFORMATTER:-cat} < $DATAFILE | fw4ex_transcode_carefully $FLAG
echo "</pre></p>"

fi
}

fw4ex_show_directory_content

This function displays the content of the current directory. It does not show the name
of this directory only its content. It receives as first argument, the rank of the data file
among the data files and, as second argument, the options to use to invoke ls.

fw4ex_show_directory_content () {
local I="$1"
local LS_FLAGS="${2:-gG}"
fw4ex_generate_fw4ex_element Épreuve $I
cat <<EOF

<p> Voici le contenu du répertoire $I en lequel opérer: <pre>
EOF

ls $LS_FLAGS | fw4ex_transcode_carefully
cat <<EOF

</pre></p>
EOF
}

fw4ex_show_student_command

This function echoes the command that will be run.

fw4ex_show_student_command () {
local COMMAND="$1"
shift
if $FW4EX_SHOW_COMMAND
then

cat <<EOF
<p> Je vais donc exécuter la commande suivante: <pre>
$(echo $COMMAND $@ | fw4ex_transcode_carefully)

8.8. LIBRARIES 61

</pre></p>
EOF

fi
if $DEBUG
then

fw4ex_generate_xml_comment "$COMMAND" "$@"
fi

}

fw4ex_run_student_command

This function takes the (student’s) command to run as first argument. The student’s
command is confined, stdout and stderr are preserved in temporary files. By default,
the PATH is prepended with the HOME directory of the student though you may override
this after setting the STUDENT_ADDITIONAL_PATH.

fw4ex_run_student_command () {
local COMMAND="$1"
shift
chmod a+x "$COMMAND" 2>/dev/null
(

(cd $TMPDIR/ && rm -f result.[st] result.n[st]) 2>/dev/null
PATH=${STUDENT_ADDITIONAL_PATH:-$HOME}:$PATH
eval "fw4ex_confine $COMMAND ""$@" \

2>$TMPDIR/err.s >$TMPDIR/result.s
cp -p $TMPDIR/.lastExitCode $TMPDIR/.lastExitCode.s
fw4ex_generate_xml_comment exitCode $(cat $TMPDIR/.lastExitCode.s)
fw4ex_verbalize_error_code $TMPDIR/.lastExitCode.s

)
}

fw4ex_run_student_command_and_options_from_file

This function takes the (student’s) command and options filename in order to build the
whole command to run.

fw4ex_run_student_command_and_options_from_file () {
local COMMAND="$1"
local OPTIONS="$2"
fw4ex_run_student_command "$COMMAND" "$(cat $OPTIONS)"

}

fw4ex_verbalize_error_code

Analyse the content of the file holding the exit code of the last command ran by fw4ex_run_student_command.
if the exit code is 222 or 228, then this is probably the confiner that ends the command,
so we verbalise it in French.

FW4EX_VERBALIZE_ALL_ERRONEOUS_CODE=false
fw4ex_verbalize_error_code () {

local FW4EX_EXIT_FILE="${1:-$TMPDIR/.lastExitCode.s}"
local code=$(cat $FW4EX_EXIT_FILE)
if [$(wc -l < $FW4EX_EXIT_FILE) -ge 1]
then

if [$code -eq 222] # too much cpu, report to author

62 CHAPTER 8. AUTHORS GUIDE

then
echo "<error> Votre programme a été interrompu car

il prenait trop de temps! </error>"
elif [$code -eq 228] # too much output, report to author
then

echo "<error> Votre programme a été interrompu car
il produisait trop de caractères! </error>"

elif [$code -eq 211] # program not started
then

echo "<error> Je n’ai pas réussi à lancer votre programme:
bizarre! </error>"

else
confiner internal error: ignore it!

:
fi

elif $FW4EX_VERBALIZE_ALL_ERRONEOUS_CODE
then if [$code -ne 0]

then echo "<warning> Le code de retour de votre programme est
<code>$code</code> !? </warning>"

fi
fi

}

fw4ex_verbalize_error

Analyse an exit code. if the exit code is 222 or 228, then this is probably the confiner
that ends the command, so we verbalise it in French.

fw4ex_verbalize_error () {
local code="$1"
if [$code -eq 222] # too much cpu, report to author
then

echo "<error> Votre programme a été interrompu car
il prenait trop de temps! </error>"

elif [$code -eq 228] # too much output, report to author
then

echo "<error> Votre programme a été interrompu car
il produisait trop de caractères! </error>"

elif [$code -eq 211] # program not started
then

echo "<error> Je n’ai pas réussi à lancer votre programme:
bizarre! </error>"

else
confiner internal error: ignore it!
:

fi
if $FW4EX_VERBALIZE_ALL_ERRONEOUS_CODE
then if [$code -ne 0]

then echo "<warning> Le code de retour de votre programme est
<code>$code</code> !? </warning>"

fi
fi

}

8.8. LIBRARIES 63

fw4ex_show_student_raw_result

Display the content of the stdout accumulated in the $TMPDIR/result.s file by the
fw4ex_run_student_command script.

Sometimes, the result file is so large that it is inconvenient to display it without some
additional formating (a presentation with several columns or a graphical presentation
may be more suited). You may specify the formatter (by default cat) with the FORMATTER
variable.

FW4EX_NUMBER_LINE=false

fw4ex_show_student_raw_result () {
local FLAG=
if ${FW4EX_NUMBER_LINE:-false}
then FLAG=--l
fi

if [[-z "${FORMATTER}"]]
then

if [[-s $TMPDIR/result.s]]
then (

trap ’echo "</pre></p>"’ 0
echo "<p> Votre commande produit:<pre>"
${FORMATTER:-cat} < $TMPDIR/result.s | \

fw4ex_transcode_carefully $FLAG
)

else
echo "<p>Votre commande n’a rien émis sur son flux de sortie.</p>"

fi
else (

trap ’echo "</pre></p>"’ 0
cat <<EOF

<p> Votre commande produit un résultat (que j’affiche avec
<code>$FORMATTER</code>):<pre>
EOF

${FORMATTER:-cat} < $TMPDIR/result.s | \
fw4ex_transcode_carefully $FLAG

)
fi
fw4ex_show_student_stderr

}

fw4ex_show_student_stderr

Display the content of the stderr if not empty. The stderr was accumulated in the
$TMPDIR/err.s file by the fw4ex_run_student_command script.

fw4ex_show_student_stderr () {
if [[-s $TMPDIR/err.s]]
then (

trap ’echo "</pre></error>"’ 0
cat <<EOF

<error> Attention! Votre commande a aussi produit les anomalies suivantes
sur son flux d’erreur: <pre>

64 CHAPTER 8. AUTHORS GUIDE

EOF
fw4ex_transcode_carefully < $TMPDIR/err.s

)
fi

}

fw4ex_run_teacher_command

This command takes a command as first argument followed by additional arguments.
It runs the command in a specialized PATH that is, the value of TEACHER_ADDITIONAL_PATH
is prepended. The default value of TEACHER_ADDITIONAL_PATH is FW4EX_EXERCISE_DIR.

Similarly to fw4ex_run_student_command, the result is stored into $TMPDIR/result.t
and the exit code is stored into $TMPDIR/.lastExitCode.t.

fw4ex_run_teacher_command () {
local COMMAND="$1"
shift
case "$COMMAND" in

/)
if [! -x "$COMMAND"]
then

echo "Je ne vois pas de fichier $COMMAND executable!" 1>&2
fi
;;

*)
true
;;

esac
if $DEBUG
then

fw4ex_generate_xml_comment "$COMMAND ""$@"
fi
(

PATH=${TEACHER_ADDITIONAL_PATH:-$FW4EX_EXERCISE_DIR}:$PATH
eval "fw4ex_confine $COMMAND ""$@" >$TMPDIR/result.t
cp -p $TMPDIR/.lastExitCode $TMPDIR/.lastExitCode.t
fw4ex_generate_xml_comment exitCode $(cat $TMPDIR/.lastExitCode)

)
}

fw4ex_run_teacher_command_and_options_from_file

fw4ex_run_teacher_command_and_options_from_file () {
local COMMAND="$1"
local SOLUTION="$2"
fw4ex_run_teacher_command "$COMMAND" "$(cat $SOLUTION)"

}

fw4ex_show_teacher_raw_result

Sometimes, the result file is so large that it is inconvenient to display it without some
additional formating (a presentation with several columns or a graphical presentation
may be more suited). You may specify the formatter (by default cat) with the FORMATTER
variable.

8.8. LIBRARIES 65

fw4ex_show_teacher_raw_result () {
local FLAG=
if ${FW4EX_NUMBER_LINE:-false}
then FLAG=--l
fi
(

trap ’echo "</pre>"’ 0
cat <<EOF

<p> Ma commande produit:</p><pre>
EOF

${FORMATTER:-cat} < $TMPDIR/result.t | \
fw4ex_transcode_carefully $FLAG

)
}

fw4ex_normalize_and_show_results

This function normalizes the result files. If the NORMALIZER variable is missing, then
cat (the identity function) is used otherwise the NORMALIZER is the name of the filter to
normalize the standard input into the standard output. The same filter normalizes the
student’s result and the author’s result.

To normalize the results is often needed before comparing them. The normalization
may sort, remove undesirable characters, etc.

However, sometimes, the results files are so large that it is inconvenient to dis-
play them without some additional formating (a presentation with several columns or a
graphical presentation may be more suited). You may specify the formatter (by default
cat) with the FORMATTER variable.

The COMPARISON_DISPOSITION variable tells how to display the normalized results. If
the lines of these files are short, then the landscape mode where the results are dis-
played side by side may be preferred. If missing this variable defaults to vertical.

fw4ex_normalize_and_show_results () {
if [! -s $TMPDIR/result.s]
then touch $TMPDIR/result.s
fi
${NORMALIZER:-cat} < $TMPDIR/result.s > $TMPDIR/result.ns 2>$TMPDIR/normerr.txt
if [! -s $TMPDIR/result.t]
then touch $TMPDIR/result.t
fi
${NORMALIZER:-cat} < $TMPDIR/result.t > $TMPDIR/result.nt

if [[-z "${NORMALIZER}"]]
then

return
fi

local FLAG=
if ${FW4EX_NUMBER_LINE:-false}
then FLAG=--l
fi

cat <<EOF
<p> Je normalise votre résultat et le mien afin de les comparer
dans le respect de l’énoncé. </p>
EOF

66 CHAPTER 8. AUTHORS GUIDE

local MODE="${1:-${COMPARISON_DISPOSITION:-vertical}}"
case "$MODE" in

################################
landscape|horizontal|stacked)

stacked means tabs!
cat <<EOF

<comparison><student><pre>
EOF

${FORMATTER:-cat} < $TMPDIR/result.ns | \
fw4ex_transcode_carefully $FLAG

echo "</pre>"
if [[-s $TMPDIR/normerr.txt]]
then

cat <<EOF
<error> Attention! La normalisation de votre résultat a aussi produit
les anomalies suivantes sur son flux d’erreur: <pre>
EOF

fw4ex_transcode_carefully < $TMPDIR/normerr.txt
cat <<EOF

</pre></error>
EOF

fi
cat <<EOF

</student><teacher><pre>
EOF

${FORMATTER:-cat} < $TMPDIR/result.nt | \
fw4ex_transcode_carefully $FLAG

cat <<EOF
</pre></teacher></comparison>
EOF

;;
################################
portrait|vertical|*)

cat <<EOF
<p>Votre commande produit donc: <pre>
EOF

${FORMATTER:-cat} < $TMPDIR/result.ns | \
fw4ex_transcode_carefully $FLAG

echo "</pre></p>"
if [[-s $TMPDIR/normerr.txt]]
then

cat <<EOF
<error> Attention! La normalisation de votre résultat a aussi produit
les anomalies suivantes sur son flux d’erreur: <pre>
EOF

fw4ex_transcode_carefully < $TMPDIR/normerr.txt
cat <<EOF

</pre></error>
EOF

fi
cat <<EOF

<p> Tandis que ma commande produit: <pre>
EOF

${FORMATTER:-cat} < $TMPDIR/result.nt | \

8.8. LIBRARIES 67

fw4ex_transcode_carefully $FLAG
cat <<EOF

</pre></p>
EOF

;;
esac

}

fw4ex_compare_results

This is the generalized comparator. The COMPARISON variable tells which kind of compar-
ison to perform. Possible values for COMPARISON are string, line, code or int (synonyms
and plural forms are also possible). See the specialized comparators for further details.

fw4ex_compare_results () {
case "${COMPARISON}" in

char|character|characters|string|strings)
fw4ex_compare_results_as_strings
;;

line|lines)
fw4ex_compare_results_as_lines
;;

code|codes)
fw4ex_compare_results_as_codes
;;

int|integer|integers)
fw4ex_compare_results_as_integers
;;

*)
echo "Cannot find such a comparison ($COMPARISON) ?" 1>&2
$ABORT 101
;;

esac
}

fw4ex_compare_results_as_strings

Compare the content of two files (a student file and a teacher file) and return the Lev-
enshthein distance.

fw4ex_compare_results_as_strings () {
local S_RESULT="$TMPDIR/result.ns"
local T_RESULT="$TMPDIR/result.nt"
if [[! -f $S_RESULT]]
then S_RESULT="$TMPDIR/result.s"
fi
if [[! -f $T_RESULT]]
then T_RESULT="$TMPDIR/result.t"
fi
cat <<EOF

<p> Je compare les deux résultats.
EOF

local DISTANCE=$(fw4ex_compare_strings \
"$(cat $S_RESULT)" \

68 CHAPTER 8. AUTHORS GUIDE

"$(cat $T_RESULT)")
fw4ex_verbalize_strings_comparison $DISTANCE
echo "Vous gagnez "
eval "fw4ex_win $WIN_FORMULA -- $DISTANCE"
echo "point(s).</p>"

}

fw4ex_verbalize_strings_comparison () {
local DISTANCE="$1"
echo "$DISTANCE" > $TMPDIR/.distance
if [["$DISTANCE" -eq 0]]
then

cat <<EOF
Bravo! Je ne vois pas de différence.
EOF

elif [["$DISTANCE" -eq 1]]
then cat <<EOF

Je trouve qu’il faut insérer/modifier/supprimer $DISTANCE caractère
pour passer de l’un à l’autre.
EOF

else cat <<EOF
Je trouve qu’il faut insérer/modifier/supprimer $DISTANCE caractères
pour passer de l’un à l’autre.
EOF

fi
}

fw4ex_compare_results_as_lines

fw4ex_compare_results_as_lines () {
local S_RESULT="$TMPDIR/result.ns"
local T_RESULT="$TMPDIR/result.nt"
if [[! -f $S_RESULT]]
then S_RESULT="$TMPDIR/result.s"
fi
if [[! -f $T_RESULT]]
then T_RESULT="$TMPDIR/result.t"
fi
cat <<EOF

<p> Je compare les deux résultats.
EOF

local DISTANCE=$(fw4ex_compare_lines "$S_RESULT" "$T_RESULT")
fw4ex_verbalize_lines_comparison $DISTANCE
echo "Vous gagnez "
eval "fw4ex_win $WIN_FORMULA -- $DISTANCE"
echo "point(s).</p>"

}

fw4ex_verbalize_lines_comparison () {
local DISTANCE="$1"
echo "$DISTANCE" > $TMPDIR/.distance
if [["$DISTANCE" -eq 0]]
then

cat <<EOF

8.8. LIBRARIES 69

Bravo! Je ne vois aucune différence.
EOF

elif [["$DISTANCE" -eq 1]]
then cat <<EOF

Je trouve qu’il faut insérer/modifier/supprimer $DISTANCE ligne
pour passer de l’un à l’autre.
EOF

else cat <<EOF
Je trouve qu’il faut insérer/modifier/supprimer $DISTANCE lignes
pour passer de l’un à l’autre.
EOF

fi
}

fw4ex_compare_results_as_codes

Compare two exit values. If the SUCCESS_FAILURE variable is true then only success (exit
codes both 0) or failure (exit codes both different from 0) is checked.

fw4ex_compare_results_as_codes () {
local SUCCESS_FAILURE=${SUCCESS_FAILURE:-false}
local S_RESULT=$(cat $TMPDIR/.lastExitCode.s)
local T_RESULT=$(cat $TMPDIR/.lastExitCode.t)
cat <<EOF

<p> Je compare les deux codes de retour:
votre code de retour est $S_RESULT,
mon code de retour est $T_RESULT.
EOF

if $SUCCESS_FAILURE
then

if [[$S_RESULT -ne 0]]
then

echo "Votre commande s’est donc mal terminée."
S_RESULT=1

fi
if [[$T_RESULT -ne 0]]
then

echo "Ma commande s’est donc mal terminée."
T_RESULT=1

fi
fi
local DISTANCE=$(fw4ex_compare_integers $S_RESULT $T_RESULT)
echo "Vous gagnez "
eval "fw4ex_win $WIN_FORMULA -- $DISTANCE"
echo "point(s).</p>"

}

fw4ex_compare_results_as_integers

This function compares the two normalized results files $TMPDIR/result.ns (normalized
student’s result) and $TMPDIR/result.nt (normalized teacher’s result). These two files
(or the non-normalized files $TMPDIR/result.s and $TMPDIR/result.t if they do not exist)
are then filtered in order to remove any non numerical characters. The two resulting

70 CHAPTER 8. AUTHORS GUIDE

numbers are then compared and their distance (the absolute value of their difference)
is computed and given to the WIN_FORMULA.

fw4ex_compare_results_as_integers () {
local S_RESULT="$TMPDIR/result.ns"
local T_RESULT="$TMPDIR/result.nt"
if [[! -f $S_RESULT]]
then S_RESULT="$TMPDIR/result.s"
fi
if [[! -f $T_RESULT]]
then T_RESULT="$TMPDIR/result.t"
fi
if $DEBUG
then

fw4ex_generate_xml_comment "S_RESULT=$S_RESULT"
fw4ex_generate_xml_comment "T_RESULT=$T_RESULT"

fi
S_RESULT=$(tr -cd 0-9 < $S_RESULT | sed -re ’s/^0*(.+)$/\1/’)
T_RESULT=$(tr -cd 0-9 < $T_RESULT | sed -re ’s/^0*(.+)$/\1/’)
cat <<EOF

<p> Je compare les deux valeurs:
la vôtre est $S_RESULT,
la mienne est $T_RESULT.
EOF

local DISTANCE=$(fw4ex_compare_integers $S_RESULT $T_RESULT)
echo "Vous gagnez "
eval "fw4ex_win $WIN_FORMULA -- $DISTANCE"
echo "point(s).</p>"

}

8.9 Extra Libraries

This section lists some libraries that are not part of CodeGradX but might be of some
interest for authors as it shows, after writing a few exercises, common functionalities
that can be factorized in a library.

8.9.1 libILP.sh

Cette bibliothèque a été écrite pour une série d’exercices utilisant Java. Elle est ici
commentée en français.

Cette bibliothèque factorise un certain nombre de fonctions utiles pour l’écriture
d’exercices liés à ILP: un cours de compilation donné à l’UPMC.

Les classes compilées (celles de l’étudiant et les classes de test qui en dépendent)
seront toutes stockées dans BINDIR

BINDIR=$TMPDIR/bin
mkdir -p $BINDIR

Les fichiers .jar communs avec Eclipse sont à placer dans le répertoire Java/jars
de l’exercice similairement à l’organisation dans Eclipse:

JARDIR=$FW4EX_EXERCISE_DIR/Java/jars

8.9. EXTRA LIBRARIES 71

Les classes de test en Java sont à placer, selon la convention adoptée pour ILP, en
Java/src/fr/upmc/ilp/ilpXtmeYTest/ProcessTest.java Comme elles dépendent du code
que doivent produire les étudiants, il faut les compiler. Il se peut qu’il y ait aussi besoin
de fichiers dans C/, Grammars/ Les programmes de tests sont en Grammars/Samples/*.{xml,result,print}

NOTA: jing attend que les grammaires incluses soient à côté de la grammaire inclu-
ante.

La plupart des exercices vont nécessiter les .jar suivants:

XMLUNITJAR=${JARDIR}/xmlunit-1.3.jar
JINGJAR=${JARDIR}/jing.jar
JCOMMANDERJAR=${JARDIR}/jcommander-1.18.jar

Il faut faire très attention au classpath afin que les étudiants ne masquent pas les
classes correctes servant au test.

CP=$FW4EX_JUNIT_JAR:$JINGJAR:$JCOMMANDERJAR:$XMLUNITJAR

Ces deux variables sont des options supplémentaires pour javac et java:

JAVACFLAGS=’-verbose’
JAVAFLAGS=’-verbose’

fw4ex_ilp_compile_student_classes

Cette fonction compile (et verbalise) le fichier source java de l’étudiant, donné en argu-
ment. Généralement, l’argument ressemble à fr/upmc/ilp/ilp2tme4/Process.java. Si
la compilation est correcte alors l’étudiant gagne MARK4STUDENTCLASSCOMPILATION points.
Les resultats de compilation apparaitront en BINDIR.

Il peut être utile de positionner avant de compiler:

JAVACFLAGS=’-sourcepath $HOME/Java/src/ ’

MARK4STUDENTCLASSCOMPILATION=1
fw4ex_ilp_compile_student_classes () {

local CLASSFILENAME="$@"
cat <<EOF

<p> Je compile vos classes avec la commande: <pre>
$(echo javac $JAVACFLAGS -d $BINDIR -cp $CP:. $@ | \

fw4ex_transcode_carefully --s=90)
</pre></p>
EOF

fw4ex_confine javac $JAVACFLAGS -Xmaxerrs 10 -Xmaxwarns 10 \
-d $BINDIR \
-cp $CP:. \
$@ \
>$TMPDIR/result.s 2>$TMPDIR/err.s

fw4ex_verbalize_error_code $TMPDIR/.lastExitCode
javac ne produit rien sur le stdout
fw4ex_show_student_stderr

local code=$(cat $TMPDIR/.lastExitCode)
if ["$code" -gt 0]
then

fw4ex_generate_fw4ex_element "exit code $code"
cat <<EOF

<p><error> La compilation a échoué. </error>

72 CHAPTER 8. AUTHORS GUIDE

J’arrête tout! </p>
EOF

exit
else

cat <<EOF
<p> La compilation a réussi, vous gagnez
$(fw4ex_win $MARK4STUDENTCLASSCOMPILATION) point. </p>
EOF

fi
}

fw4ex_ilp_compile_test_classes

Cette fonction compile (et verbalise) le fichier source java de l’enseignant, donné en ar-
gument. Généralement, l’argument ressemble à quelque chose comme (c’est le test de
l’enseignant): $FW4EX_EXERCISE_DIR/Java/src/fr/upmc/ilp/ilp2tme4Test/ProcessTest.java
Si la compilation est correcte alors l’étudiant gagne MARK4TESTCLASSCOMPILATION points.
Cette compilation est effectuée en utilisant prioritairement les classes de l’étudiant
précédemment compilées en BINDIR.

Il peut être utile de positionner avant de compiler:

JAVACFLAGS=’-sourcepath $FW4EX_EXERCISE_DIR/Java/src/ ’

MARK4TESTCLASSCOMPILATION=20
fw4ex_ilp_compile_test_classes () {

local CLASSFILENAME="$@"
cat <<EOF

<p> Je compile maintenant mes classes de test avec la commande: <pre>
$(echo javac $JAVACFLAGS -d $BINDIR -cp $CP:$BINDIR $@ | \

fw4ex_transcode_carefully --s=90)
</pre></p>
EOF

fw4ex_confine javac $JAVACFLAGS -Xmaxerrs 10 -Xmaxwarns 10 \
-d $BINDIR \
-cp $CP:$BINDIR \
$@ \
>$TMPDIR/result.s 2>$TMPDIR/err.s

fw4ex_verbalize_error_code $TMPDIR/.lastExitCode
javac ne produit rien sur le stdout
fw4ex_show_student_stderr

local code=$(cat $TMPDIR/.lastExitCode)
if ["$code" -gt 0]
then

fw4ex_generate_fw4ex_element "exit code $code"
cat <<EOF

<p><error> La compilation a échoué. </error>
J’arrête tout! </p>
EOF

exit
else

cat <<EOF
<p> La compilation a réussi, vous gagnez encore
$(fw4ex_win $MARK4TESTCLASSCOMPILATION) point.
Voici donc le détail de toutes les classes compilées: </p>

8.9. EXTRA LIBRARIES 73

EOF
fw4ex_show_directory $BINDIR

fi
}

fw4ex_ilp_compile_grammar

Cette fonction prend une grammaire .rnc et la compile en une grammaire .rng.

MARK4GRAMMARCOMPILATION=1
TRANG=$FW4EX_EXERCISE_DIR/Java/jars/trang.jar
fw4ex_ilp_compile_grammar () {

local GRAMMAR="$1"
cat <<EOF

<p> Je convertis votre grammaire .rnc en une grammaire .rng. </p>
EOF

if [-r ${GRAMMAR%.rnc}.rng]
then

cat <<EOF
<p> Ah mais je vois que vous avez déjà <code>${GRAMMAR%.rnc}.rng</code>,
je la retire afin de vérifier votre .rnc. </p>
EOF

fi

case "$GRAMMAR" in
/)

local GRAMMARDIR=${GRAMMAR%/*}
local GRAMMARNAME=${GRAMMAR##*/}
local HERE=‘pwd‘
cd $GRAMMARDIR
fw4ex_confine java -jar $TRANG \

-i encoding=utf-8 -o encoding=utf-8 \
$GRAMMARNAME ${GRAMMARNAME%.rnc}.rng \
> $TMPDIR/result.s 2>$TMPDIR/err.s

cd $HERE
;;

*)
fw4ex_confine java -jar $TRANG \

-i encoding=utf-8 -o encoding=utf-8 \
$GRAMMAR ${GRAMMAR%.rnc}.rng \
> $TMPDIR/result.s 2>$TMPDIR/err.s

;;
esac
fw4ex_verbalize_error_code $TMPDIR/.lastExitCode
fw4ex_show_student_stderr

local code=$(cat $TMPDIR/.lastExitCode)
if ["$code" -gt 0]
then

fw4ex_generate_fw4ex_element "exit code $code"
cat <<EOF

<p><error> La conversion a échoué. </error>
J’arrête tout! </p>
EOF

exit

74 CHAPTER 8. AUTHORS GUIDE

else
echo "<p> La conversion a réussi, voici vos grammaires: <pre>"
case "$GRAMMAR" in

/)
ls -lgG ${GRAMMAR%/*}/gramm* | \

fw4ex_transcode_carefully
;;

*)
ls -lgG gramm* | \

fw4ex_transcode_carefully
;;

esac
echo "</pre></p>"
cat <<EOF

<p> Vous gagnez $(fw4ex_win $MARK4GRAMMARCOMPILATION) points. </p>
EOF

fi
}

fw4ex_ilp_analyze_results

Cette fonction analyse et verbalise le résultat d’un test JUnit. Selon la façon dont le
test est lancé, une dernière ligne indique le nombre de tests réussis ou ratés. Si l’on
utilise org.fw4ex.junit, le nombre d’assertions réussies est aussi imprimé. Le nombre
de points gagnés est FACTOR fois le nombre de tests réussis. FACTOR est l’argument de
cette fonction (et par défaut vaut 1).

fw4ex_ilp_analyze_results () {
local FACTOR="${1:-1}"

fw4ex_ilp_extract_results
fw4ex_ilp_verbalize_results "$FACTOR"

}

fw4ex_ilp_verbalize_results () {
local FACTOR="${1:-1}"

if (("$FAILURES" == 0))
then

cat <<EOF
<p> L’exécution s’est très bien passé, vous gagnez
$(fw4ex_win "$FACTOR * $TESTS") point. </p>
EOF

elif (("$FAILURES" >= "$TESTS"))
then

cat <<EOF
<error> Tous les tests ont échoué! </error>
<p> Vous ne gagnez aucun point. </p>
EOF

exit
else

cat <<EOF
<error> Parmi les $TESTS tests, $FAILURES ont échoué! </error>
<p> Vous ne gagnez que $(fw4ex_win "$FACTOR * ($TESTS - $FAILURES)")
points. </p>

8.10. PATTERNS 75

EOF
exit

fi
}

8.10 Patterns

Since I do not come with a simple but sensible naming scheme for these patterns, I
name them after French towns (there is an hidden pattern in choosing these names).
Here follows a quick coded sketch of their main characteristics. They mainly differ
in how the whole command is built, how the data file is fed (via stdin or argument),
whether to jump to some directory, etc. In the following table, student’s input appear
in capitals.

Name Sketch
BourgEnBresse $command $OPTIONS < $data
Laon $COMMAND $command_flags < $data
Moulin cd $datadir/ && $command $OPTIONS <$command_stdin
Digne cd $datadir/ && $COMMAND <$command_stdin
Gap $COMMAND $data <$command_stdin
Nice $COMMAND $(cat $data) <$command_stdin

8.10.1 BourgEnBresse.sh

This pattern corresponds to an exercise that asks for a set of options (a string) to tailor
a command so it behaves as specified by the stem. For instance, what options to the
Unix command tr may convert lower cases letters to upper case letters ? An answer
is a-z A-Z but not tr a-z A-Z since the options are required but not the command (tr)
which is already known.

This pattern gauges the student’s answer by comparison to the author’s solution.
The command receives data files on its stdin, the result is in the stdout. To sum up and
using the variables documented below, this pattern may be roughly characterized as:

$COMMAND $(cat $OPTIONS) < $data

This pattern emits a grading report in French (encoded as UTF-8). Here is a short
example:

COMMAND=tr
NORMALIZER=removeTrailingBlanks
COMPARISON=char
TOTAL_WIN=10
WIN_FORMULA=’triangular 0 0 5 $TOTAL_WIN/$DATA_NUMBER’

removeTrailingBlanks () {
sed -e ’s/ *$//’

}

source $FW4EX_LIB_DIR/Patterns/BourgEnBresse.sh

Here are the parameters to configure this pattern.

76 CHAPTER 8. AUTHORS GUIDE

COMMAND

This variable defines the program to run. The final command will be made of the
program followed by the options proposed by the student.

PRECOMMAND

This variable if set tells how to transform the data to be fed to COMMAND. Examples of
PRECOMMAND may be sort or cut | sort.

OPTIONS

This variable specifies the name of the file that contains the string of options (a single
line). Pay attention, the variable does not hold the options but the filename where are
stored the options. By default, this file is named options.

OPTIONS=${OPTIONS:-options}

SOLUTION

This variable specifies the name of the file that contains a correct solution that is a
string of options achieving the desired behavior. By default, this pattern assumes that
a perfect pseudo-job exists that contains the appropriate file named by the previous
variable OPTIONS.

SOLUTION=${SOLUTION:-$FW4EX_EXERCISE_DIR/pseudos/perfect/$OPTIONS}

CHECK_OPTIONS

A common mistake is to prepend options with the name of the command. The stem
should ask for options not for the whole command. See pattern \ref{pattern:Digne} for
that. By default, this variable is true and signals the mistake. Set this variable to false
if this is not desired.

Whether the mistake is signalled or not, the grading process continues.

CHECK_OPTIONS=${CHECK_OPTIONS:-true}

DATA_DIR

This variable is the name of the directory that contains the test files. By default, test
files are located in the tests/ directory of the tar gzipped exercise. This directory should
be defined with an absolute pathname.

DATA_DIR=${DATA_DIR:-$FW4EX_EXERCISE_DIR/tests}

DATA_SUFFIX

This variable tells the suffix the test files have. By default, the suffix is data. Any file
with that suffix in the DATA_DIR directory is a test file. Test files are used in alphabetic
order.

The number of tests is therefore the number of files in $DATA_DIR/*.$DATA_SUFFIX.
This number will be computed by the pattern and set as the value of the DATA_NUMBER
variable.

DATA_SUFFIX=${DATA_SUFFIX:-data}

8.10. PATTERNS 77

NORMALIZER

This variable contains the name of the command (program + options or internal bash
function as shown in the synopsis above) that normalizes the output of the programs to
compare. You are not required to define this variable if you don’t need normalization.

COMPARISON

This variable contains a word that defines the kind of comparison.

The char comparison computes the Levenshtein distance between the student’s
answer and the author’s answer. The Levenshtein distance should not be used to
compare too long strings.

The line comparison uses the diff utility to count the number of dissimilar lines.

The code comparison compares the exit codes of the student’s and author’s com-
mands.

The int comparison compares the stdout of the student’s and author’s commands.
These stdout are assumed to be integers.

The COMPARISON variable is there to ease switching from one comparison method to
another. If you’re sure you may remove that intermediate and patch the script below.

COMPARISON=${COMPARISON:-char}

TOTAL_WIN

This variable defines the maximal mark that may be won. Given the nature of the
pattern, any test case allows the student to win TOTAL_WIN/DATA_NUMBER (rounded to two
decimals only). To avoid embarrassing rounding, avoid a TOTAL_WIN of 1 with only 3
tests. The total mark will amount to 0.99 instead of 1.

WIN_FORMULA

This variable defines how to compute the number of points a student wins for one
test file. The comparison (determined by COMPARISON) computes a distance: 0 is
perfection (student’s and author’s normalized answers are the same). The WIN_FORMULA
variable defines how to convert the distance into a mark. It defines the first arguments
of a call to win.pl. See documentation of this utility for more details.

FW4EX_SHOW_COMMAND

This boolean variable controls whether to display the command to run.

FW4EX_SHOW_COMMAND=${FW4EX_SHOW_COMMAND:-true}

78 CHAPTER 8. AUTHORS GUIDE

Script

The script is sufficiently short to be shown. It uses the basicLib.sh, moreLib.sh and
comparisonLib.sh libraries. The presence of the OPTIONS file is already checked.

Show the command that will be run to the student:

if [[-n "$PRECOMMAND"]]
then

fw4ex_show_command_and_options_from_file "$PRECOMMAND | $COMMAND" "$OPTIONS"
else

fw4ex_show_command_and_options_from_file "$COMMAND" "$OPTIONS"
fi

Check if students prefix their options by the name of the command:

if $CHECK_OPTIONS
then

fw4ex_check_options_prefixed_by_command "$COMMAND" "$OPTIONS"
fi

For every data file, run student’s and author’s program and compare:

DATA_NUMBER=$(ls -1 $DATA_DIR/*.${DATA_SUFFIX} | wc -l)
if [[$DATA_NUMBER -eq 0]] ; then exit ; fi
cat <<EOF
<p>
Je vais comparer votre solution et la mienne sur $DATA_NUMBER fichiers
de données.
</p>
EOF

I=0
Iterate on every data file

for data in $DATA_DIR/*.${DATA_SUFFIX}
do

I=$(($I+1))
(

trap ’echo "</section>"’ 0
Describe the test ie show the content of the data file:
echo "<section rank=’$I’>"
fw4ex_show_data_file $I "$data"

Run student’s command:
if [[-n "$PRECOMMAND"]]
then

Show student’s command:
fw4ex_show_student_command \

"cat $data | $PRECOMMAND | $COMMAND" "$(cat $OPTIONS)"
cat "$data" | eval $PRECOMMAND | \

fw4ex_run_student_command_and_options_from_file \
"$COMMAND" "$OPTIONS"

else
Show student’s command:
fw4ex_show_student_command "$COMMAND" "$(cat $OPTIONS)" "< $data"
fw4ex_run_student_command_and_options_from_file \

8.10. PATTERNS 79

"$COMMAND" "$OPTIONS" < "$data"
fi
and show raw result of this command:
fw4ex_show_student_raw_result
Possible hook for authors:
fw4ex_after_student_run_hook $I "$data"

Run author’s command. If this command is erroneous, errors
will be emitted on stderr and sent to the author.
if [[-n "$PRECOMMAND"]]
then

cat "$data" | eval $PRECOMMAND | \
fw4ex_run_teacher_command_and_options_from_file \

"$COMMAND" "$SOLUTION"
else

fw4ex_run_teacher_command_and_options_from_file \
"$COMMAND" "$SOLUTION" < "$data"

fi
fw4ex_show_teacher_raw_result
fw4ex_after_teacher_run_hook $I "$data"

Normalize then show raw results:
if [[-n "$NORMALIZER"]]
then

fw4ex_normalize_and_show_results
fi

Compare normalized results and determine the win:
fw4ex_compare_results

)
done

8.10.2 Laon.sh

This pattern corresponds to an exercise that asks for a command. For instance, what
command may convert lower cases letters to upper case letters ?

This pattern gauges the student’s answer by comparison to the author’s solution.
The command receives data files on its stdin, the result is in the stdout. To sum up and
using the variables documented below, this pattern may be roughly characterized as:

$(cat $COMMAND) $command_flags < $data

This pattern emits a grading report in French (encoded as UTF-8). Here is a short
example:

NORMALIZER=removeTrailingBlanks
COMPARISON=line
TOTAL_WIN=10
WIN_FORMULA=’triangular 0 0 5 $TOTAL_WIN/$DATA_NUMBER’

removeTrailingBlanks () {
sed -e ’s/ *$//’

}

source $FW4EX_LIB_DIR/Patterns/Laon.sh

Here are the parameters to configure this pattern.

80 CHAPTER 8. AUTHORS GUIDE

COMMAND

This variable specifies the name of the file that contains the script to run. By default,
this file is named command.

COMMAND=${COMMAND:-command}

COMMAND_FLAGS

This variable specifies the additional options to run COMMAND. By default, this variable is
empty.

COMMAND_FLAGS=${COMMAND_FLAGS:-}

SOLUTION

This variable specifies the name of the file that contains a correct solution that is a
command achieving the desired behavior. By default, this pattern assumes that a
perfect pseudo-job exists that contains the appropriate file named by the previous
variable COMMAND.

SOLUTION=${SOLUTION:-$FW4EX_EXERCISE_DIR/pseudos/perfect/$COMMAND}

DATA_DIR

This variable is the name of the directory that contains the test files. By default, test
files are located in the tests/ directory of the tar gzipped exercise. This directory should
be defined with an absolute pathname.

DATA_DIR=${DATA_DIR:-$FW4EX_EXERCISE_DIR/tests}

DATA_SUFFIX

This variable tells the suffix the test files have. By default, the suffix is data. Any file
with that suffix in the DATA_DIR directory is a test file. Test files are used in alphabetic
order.

The number of tests is therefore the number of files in $DATA_DIR/*.$DATA_SUFFIX.
This number will be computed by the pattern and set as the value of the DATA_NUMBER
variable.

DATA_SUFFIX=${DATA_SUFFIX:-data}

NORMALIZER

This variable contains the name of the command (program + options or internal bash
function as shown in the synopsis above) that normalizes the output of the programs to
compare. You are not required to define this variable if you don’t need normalization.

COMPARISON

This variable contains a word that defines the kind of comparison.

The char comparison computes the Levenshtein distance between the student’s
answer and the author’s answer. The Levenshtein distance should not be used to
compare too long strings.

8.10. PATTERNS 81

The line comparison uses the diff utility to count the number of dissimilar lines.

The code comparison compares the exit codes of the student’s and author’s com-
mands.

The int comparison compares the stdout of the student’s and author’s commands.
These stdout are assumed to be integers.

The COMPARISON variable is there to ease switching from one comparison method to
another. If you’re sure you may remove that intermediate and patch the script below.

COMPARISON=${COMPARISON:-char}

TOTAL_WIN

This variable defines the maximal mark that may be won. Given the nature of the
pattern, any test case allows the student to win TOTAL_WIN/DATA_NUMBER (rounded to two
decimals only). To avoid embarrassing rounding, avoid a TOTAL_WIN of 1 with only 3
tests. The total mark will amount to 0.99 instead of 1.

WIN_FORMULA

This variable defines how to compute the number of points a student wins for one
test file. The comparison (determined by COMPARISON) computes a distance: 0 is
perfection (student’s and author’s normalized answers are the same). The WIN_FORMULA
variable defines how to convert the distance into a mark. It defines the first arguments
of a call to win.pl. See documentation of this utility for more details.

FW4EX_SHOW_SCRIPT

This boolean variable controls whether the student’s script will be displayed or not. Byt
default, the script is displayed.

FW4EX_SHOW_SCRIPT=${FW4EX_SHOW_SCRIPT:-true}

FW4EX_SHOW_COMMAND

This boolean variable controls whether to display the command to run.

FW4EX_SHOW_COMMAND=${FW4EX_SHOW_COMMAND:-true}

Script

The script is sufficiently short to be shown. It uses the basicLib.sh, moreLib.sh and
comparisonLib.sh libraries. The presence of the COMMAND file is already checked.

Show the command that will be run to the student:

if $FW4EX_SHOW_SCRIPT
then

fw4ex_show_script "$COMMAND"
fi

82 CHAPTER 8. AUTHORS GUIDE

For every data file, run student’s and author’s program and compare:

DATA_NUMBER=$(ls -1 $DATA_DIR/*.${DATA_SUFFIX} | wc -l)
if [[$DATA_NUMBER -eq 0]] ; then exit ; fi
cat <<EOF
<p>
Je vais comparer votre solution et la mienne sur $DATA_NUMBER fichiers
de données.
</p>
EOF

I=0
Iterate on every data file

for data in $DATA_DIR/*.${DATA_SUFFIX}
do

I=$(($I+1))
(

trap ’echo "</section>"’ 0
Describe the test ie show the content of the data file:
echo "<section rank=’$I’>"
fw4ex_show_data_file $I "$data"

Show student’s command:
fw4ex_show_student_command "$COMMAND" $COMMAND_FLAGS "< $data"
Run student’s command:
fw4ex_run_student_command "$COMMAND" $COMMAND_FLAGS < "$data"
and show raw result of this command:
fw4ex_show_student_raw_result
Possible hook for authors:
fw4ex_after_student_run_hook $I "$data"

Run author’s command. If this command is erroneous, errors
will be emitted on stderr and sent to the author.
fw4ex_run_teacher_command "$SOLUTION" $COMMAND_FLAGS < "$data"
fw4ex_show_teacher_raw_result
fw4ex_after_teacher_run_hook $I "$data"

Normalize then show raw results:
if [[-n "$NORMALIZER"]]
then

fw4ex_normalize_and_show_results
fi

Compare normalized results and determine the win:
fw4ex_compare_results

)
done

8.10.3 Moulins.sh

This pattern corresponds to an exercise that asks for a set of options (a string) to tailor
a command so it behaves as specified by the stem. The command will be run in various
directories.

This pattern gauges the student’s answer by comparison to the author’s solution.
The command receives data files on its stdin, the result is in the stdout. To sum up and
using the variables documented below, this pattern may be roughly characterized as:

8.10. PATTERNS 83

cd $datadir/ && $COMMAND $(cat $OPTIONS)

This pattern emits a grading report in French (encoded as UTF-8). Here is a short
example:

COMMAND=tr
NORMALIZER=removeTrailingBlanks
COMPARISON=char
TOTAL_WIN=10
WIN_FORMULA=’triangular 0 0 5 $TOTAL_WIN/$DATA_NUMBER’

removeTrailingBlanks () {
sed -e ’s/ *$//’

}

source $FW4EX_LIB_DIR/Patterns/Moulin.sh

Here are the parameters to configure this pattern.

COMMAND

This variable defines the program to run. The final command will be made of the
program followed by the options proposed by the student.

OPTIONS

This variable specifies the name of the file that contains the string of options (a single
line). Pay attention, the variable does not hold the options but the filename where are
stored the options. By default, this file is named options.

OPTIONS=${OPTIONS:-options}

COMMAND_STDIN

This variable specifies the standard input to be given to COMMAND. By default, this is
/dev/null.

COMMAND_STDIN=${COMMAND_STDIN:-/dev/null}

SOLUTION

This variable specifies the name of the file that contains a correct solution that is a
string of options achieving the desired behavior. By default, this pattern assumes that
a perfect pseudo-job exists that contains the appropriate file named by the previous
variable OPTIONS.

SOLUTION=${SOLUTION:-$FW4EX_EXERCISE_DIR/pseudos/perfect/$OPTIONS}

CHECK_OPTIONS

A common mistake is to prepend options with the name of the command. The stem
should ask for options not for the whole command. See pattern \ref{pattern:Digne} for
that. By default, this variable is true and signals the mistake. Set this variable to false
if this is not desired.

Whether the mistake is signalled or not, the grading process continues.

CHECK_OPTIONS=${CHECK_OPTIONS:-true}

84 CHAPTER 8. AUTHORS GUIDE

DATA_DIR

This variable is the name of the directory that contains the test directories. By default,
test directories are located in the tests/ directory of the tar gzipped exercise. This
directory should be defined with an absolute pathname.

DATA_DIR=${DATA_DIR:-$FW4EX_EXERCISE_DIR/tests}

DATA_SUFFIX

This variable tells the suffix the test files have. By default, the suffix is d. Any directory
with that suffix in the DATA_DIR directory is a test directory. Test directories are used in
alphabetic order.

The number of tests is therefore the number of directories in $DATA_DIR/*.$DATA_SUFFIX/.
This number will be computed by the pattern and set as the value of the DATA_NUMBER
variable.

DATA_SUFFIX=${DATA_SUFFIX:-d}

NORMALIZER

This variable contains the name of the command (program + options or internal bash
function as shown in the synopsis above) that normalizes the output of the programs to
compare. You are not required to define this variable if you don’t need normalization.

COMPARISON

This variable contains a word that defines the kind of comparison.

The char comparison computes the Levenshtein distance between the student’s
answer and the author’s answer. The Levenshtein distance should not be used to
compare too long strings.

The line comparison uses the diff utility to count the number of dissimilar lines.

The code comparison compares the exit codes of the student’s and author’s com-
mands.

The int comparison compares the stdout of the student’s and author’s commands.
These stdout are assumed to be integers.

The COMPARISON variable is there to ease switching from one comparison method to
another. If you’re sure you may remove that intermediate and patch the script below.

COMPARISON=${COMPARISON:-char}

TOTAL_WIN

This variable defines the maximal mark that may be won. Given the nature of the
pattern, any test case allows the student to win TOTAL_WIN/DATA_NUMBER (rounded to two
decimals only). To avoid embarrassing rounding, avoid a TOTAL_WIN of 1 with only 3
tests. The total mark will amount to 0.99 instead of 1.

8.10. PATTERNS 85

WIN_FORMULA

This variable defines how to compute the number of points a student wins for one
test file. The comparison (determined by COMPARISON) computes a distance: 0 is
perfection (student’s and author’s normalized answers are the same). The WIN_FORMULA
variable defines how to convert the distance into a mark. It defines the first arguments
of a call to win.pl. See documentation of this utility for more details.

FW4EX_SHOW_COMMAND

This boolean variable controls whether to display the command to run.

FW4EX_SHOW_COMMAND=${FW4EX_SHOW_COMMAND:-true}

Script

The script is sufficiently short to be shown. It uses the basicLib.sh, moreLib.sh and
comparisonLib.sh libraries. The presence of the OPTIONS file is already checked.

Show the command that will be run to the student:

fw4ex_show_command_and_options_from_file "$COMMAND" "$OPTIONS"

Check if students prefix their options by the name of the command:

if $CHECK_OPTIONS
then

fw4ex_check_options_prefixed_by_command "$COMMAND" "$OPTIONS"
fi

For every data file, run student’s and author’s program and compare:

DATA_NUMBER=$(ls -d1 $DATA_DIR/*.${DATA_SUFFIX}/ | wc -l)
if [[$DATA_NUMBER -eq 0]] ; then exit ; fi
cat <<EOF
<p>
Je vais comparer votre solution et la mienne sur $DATA_NUMBER
répertoires de données.
</p>
EOF

I=0
Iterate on every data file

for datadir in $DATA_DIR/*.${DATA_SUFFIX}/
do

I=$(($I+1))
(

trap ’echo "</section>"’ 0
OPTIONS=$(pwd)/$OPTIONS
cd $datadir
Describe the test ie show the content of the data directory:
echo "<section rank=’$I’>"
fw4ex_show_directory_content $I "$datadir"

86 CHAPTER 8. AUTHORS GUIDE

Show student’s command:
fw4ex_show_student_command "$COMMAND" "$(cat $OPTIONS)" \

" < $COMMAND_STDIN"
Run student’s command:
fw4ex_run_student_command_and_options_from_file \

"$COMMAND" "$OPTIONS" < $COMMAND_STDIN
and show raw result of this command:
fw4ex_show_student_raw_result
Possible hook for authors:
fw4ex_after_student_run_hook $I "$datadir"

Run author’s command. If this command is erroneous, errors
will be emitted on stderr and sent to the author.
fw4ex_run_teacher_command_and_options_from_file \

"$COMMAND" "$SOLUTION" < $COMMAND_STDIN
fw4ex_show_teacher_raw_result
fw4ex_after_teacher_run_hook $I "$datadir"

Normalize then show raw results:
if [[-n "$NORMALIZER"]]
then

fw4ex_normalize_and_show_results
fi

Compare normalized results and determine the win:
fw4ex_compare_results

)
done

8.10.4 Digne.sh

This pattern corresponds to an exercise that asks for a command. The command will
be run in various directories.

This pattern gauges the student’s answer by comparison to the author’s solution.
The command is run within various directories, the result is in the stdout. To sum up
and using the variables documented below, this pattern may be roughly characterized
as:

cd $datadir/ && $(cat $COMMAND)

This pattern emits a grading report in French (encoded as UTF-8). Here is a short
example:

NORMALIZER=removeTrailingBlanks
COMPARISON=char
TOTAL_WIN=10
WIN_FORMULA=’triangular 0 0 5 $TOTAL_WIN/$DATA_NUMBER’

removeTrailingBlanks () {
sed -e ’s/ *$//’

}

source $FW4EX_LIB_DIR/Patterns/Digne.sh

Here are the parameters to configure this pattern.

8.10. PATTERNS 87

COMMAND

This variable specifies the name of the file that contains the script to run. By default,
this file is named command.

COMMAND=${COMMAND:-command}

COMMAND_STDIN

This variable specifies the standard input to be given to COMMAND. By default, this is
/dev/null.

COMMAND_STDIN=${COMMAND_STDIN:-/dev/null}

COMMAND_FLAGS

This variable specifies the additional options to run COMMAND. By default, this variable is
empty.

#cut
COMMAND_FLAGS=${COMMAND_FLAGS:-}

SOLUTION

This variable specifies the name of the file that contains a correct solution that is a
script achieving the desired behavior. By default, this pattern assumes that a perfect
pseudo-job exists that contains the appropriate file named by the previous variable
COMMAND.

SOLUTION=${SOLUTION:-$FW4EX_EXERCISE_DIR/pseudos/perfect/$COMMAND}

DATA_DIR

This variable is the name of the directory that contains the test directories. By default,
test directories are located in the tests/ directory of the tar gzipped exercise. This
directory should be defined with an absolute pathname.

DATA_DIR=${DATA_DIR:-$FW4EX_EXERCISE_DIR/tests}

DATA_SUFFIX

This variable tells the suffix the test files have. By default, the suffix is d. Any directory
with that suffix in the DATA_DIR directory is a test directory. Test directories are used in
alphabetic order.

The number of tests is therefore the number of directories in $DATA_DIR/*.$DATA_SUFFIX/.
This number will be computed by the pattern and set as the value of the DATA_NUMBER
variable.

DATA_SUFFIX=${DATA_SUFFIX:-d}

NORMALIZER

This variable contains the name of the command (program + options or internal bash
function as shown in the synopsis above) that normalizes the output of the programs to
compare. You are not required to define this variable if you don’t need normalization.

88 CHAPTER 8. AUTHORS GUIDE

COMPARISON

This variable contains a word that defines the kind of comparison.

The char comparison computes the Levenshtein distance between the student’s
answer and the author’s answer. The Levenshtein distance should not be used to
compare too long strings.

The line comparison uses the diff utility to count the number of dissimilar lines.

The code comparison compares the exit codes of the student’s and author’s com-
mands.

The int comparison compares the stdout of the student’s and author’s commands.
These stdout are assumed to be integers.

The COMPARISON variable is there to ease switching from one comparison method to
another. If you’re sure you may remove that intermediate and patch the script below.

COMPARISON=${COMPARISON:-char}

TOTAL_WIN

This variable defines the maximal mark that may be won. Given the nature of the
pattern, any test case allows the student to win TOTAL_WIN/DATA_NUMBER (rounded to two
decimals only). To avoid embarrassing rounding, avoid a TOTAL_WIN of 1 with only 3
tests. The total mark will amount to 0.99 instead of 1.

WIN_FORMULA

This variable defines how to compute the number of points a student wins for one
test file. The comparison (determined by COMPARISON) computes a distance: 0 is
perfection (student’s and author’s normalized answers are the same). The WIN_FORMULA
variable defines how to convert the distance into a mark. It defines the first arguments
of a call to win.pl. See documentation of this utility for more details.

FW4EX_SHOW_SCRIPT

This boolean variable controls whether the student’s script will be displayed or not. By
default, the script is displayed.

FW4EX_SHOW_SCRIPT=${FW4EX_SHOW_SCRIPT:-true}

FW4EX_SHOW_COMMAND

This boolean variable controls whether to display the command to run.

FW4EX_SHOW_COMMAND=${FW4EX_SHOW_COMMAND:-true}

8.10. PATTERNS 89

Script

The script is sufficiently short to be shown. It uses the basicLib.sh, moreLib.sh and
comparisonLib.sh libraries. The presence of the OPTIONS file is already checked.

Show the command that will be run to the student:

if $FW4EX_SHOW_SCRIPT
then

fw4ex_show_script "$COMMAND"
fi

For every data directory, run student’s and author’s program and compare:

DATA_NUMBER=$(ls -d1 $DATA_DIR/*.${DATA_SUFFIX}/ | wc -l)
if [[$DATA_NUMBER -eq 0]] ; then exit ; fi
cat <<EOF
<p>
Je vais comparer votre solution et la mienne sur $DATA_NUMBER
répertoires de données.
</p>
EOF

I=0
Iterate on every data directory:

for datadir in $DATA_DIR/*.${DATA_SUFFIX}/
do

I=$(($I+1))
(

trap ’echo "</section>"’ 0
OPTIONS=$(pwd)/$OPTIONS
cd $datadir
Describe the test ie show the content of the data directory:
echo "<section rank=’$I’>"
fw4ex_show_directory_content $I "$datadir"

Show student’s command:
fw4ex_show_student_command "$COMMAND" $COMMAND_FLAGS "< $COMMAND_STDIN"
Run student’s command:
fw4ex_run_student_command "$COMMAND" $COMMAND_FLAGS < $COMMAND_STDIN
and show raw result of this command:
fw4ex_show_student_raw_result
Possible hook for authors:
fw4ex_after_student_run_hook $I "$datadir"

Run author’s command. If this command is erroneous, errors
will be emitted on stderr and sent to the author.
fw4ex_run_teacher_command "$SOLUTION" $COMMAND_FLAGS < $COMMAND_STDIN
fw4ex_show_teacher_raw_result
fw4ex_after_teacher_run_hook $I "$datadir"

Normalize then show raw results:
if [[-n "$NORMALIZER"]]
then

fw4ex_normalize_and_show_results
fi

90 CHAPTER 8. AUTHORS GUIDE

Compare normalized results and determine the win:
fw4ex_compare_results

)
done

8.10.5 Gap.sh

This pattern corresponds to an exercise that asks for a command. For instance, what
command may convert the lower cases letters from the file mentioned in its first argu-
ment to upper case letters ?

This pattern gauges the student’s answer by comparison to the author’s solution.
The command receives data file as argument, the result is in the stdout. To sum up
and using the variables documented below, this pattern may be roughly characterized
as:

$COMMAND $data

This pattern emits a grading report in French (encoded as UTF-8). Here is a short
example:

NORMALIZER=removeTrailingBlanks
COMPARISON=line
TOTAL_WIN=10
WIN_FORMULA=’triangular 0 0 5 $TOTAL_WIN/$DATA_NUMBER’

removeTrailingBlanks () {
sed -e ’s/ *$//’

}

source $FW4EX_LIB_DIR/Patterns/Gap.sh

Here are the parameters to configure this pattern.

COMMAND

This variable specifies the name of the file that contains the script to run. By default,
this file is named command. This command will receive the name of the data file as an
argument surrounded with LEFT_FLAGS and RIGHT_FLAGS.

COMMAND=${COMMAND:-command}

LEFT_FLAGS

This variable contains additional arguments to be given to COMMAND before the name of
the data file. By default, this variable is empty.

LEFT_FLAGS=${LEFT_FLAGS:-}

RIGHT_FLAGS

This variable contains additional arguments to be given to COMMAND after the name of the
data file. By default, this variable is empty.

RIGHT_FLAGS=${RIGHT_FLAGS:-}

8.10. PATTERNS 91

COMMAND_STDIN

This variable specifies the standard input to be given to COMMAND. By default, this is
/dev/null.

COMMAND_STDIN=${COMMAND_STDIN:-/dev/null}

SOLUTION

This variable specifies the name of the file that contains a correct solution that is a
command achieving the desired behavior. By default, this pattern assumes that a
perfect pseudo-job exists that contains the appropriate file named by the previous
variable COMMAND.

SOLUTION=${SOLUTION:-$FW4EX_EXERCISE_DIR/pseudos/perfect/$COMMAND}

DATA_DIR

This variable is the name of the directory that contains the test files. By default, test
files are located in the tests/ directory of the tar gzipped exercise. This directory should
be defined with an absolute pathname.

DATA_DIR=${DATA_DIR:-$FW4EX_EXERCISE_DIR/tests}

DATA_SUFFIX

This variable tells the suffix the test files have. By default, the suffix is data. Any file
with that suffix in the DATA_DIR directory is a test file. Test files are used in alphabetic
order.

The number of tests is therefore the number of files in $DATA_DIR/*.$DATA_SUFFIX.
This number will be computed by the pattern and set as the value of the DATA_NUMBER
variable.

DATA_SUFFIX=${DATA_SUFFIX:-data}

NORMALIZER

This variable contains the name of the command (program + options or internal bash
function as shown in the synopsis above) that normalizes the output of the programs to
compare. You are not required to define this variable if you don’t need normalization.

COMPARISON

This variable contains a word that defines the kind of comparison.

The char comparison computes the Levenshtein distance between the student’s
answer and the author’s answer. The Levenshtein distance should not be used to
compare too long strings.

The line comparison uses the diff utility to count the number of dissimilar lines.

The code comparison compares the exit codes of the student’s and author’s com-
mands.

92 CHAPTER 8. AUTHORS GUIDE

The int comparison compares the stdout of the student’s and author’s commands.
These stdout are assumed to be integers.

The COMPARISON variable is there to ease switching from one comparison method to
another. If you’re sure you may remove that intermediate and patch the script below.

COMPARISON=${COMPARISON:-char}

TOTAL_WIN

This variable defines the maximal mark that may be won. Given the nature of the
pattern, any test case allows the student to win TOTAL_WIN/DATA_NUMBER (rounded to two
decimals only). To avoid embarrassing rounding, avoid a TOTAL_WIN of 1 with only 3
tests. The total mark will amount to 0.99 instead of 1.

WIN_FORMULA

This variable defines how to compute the number of points a student wins for one
test file. The comparison (determined by COMPARISON) computes a distance: 0 is
perfection (student’s and author’s normalized answers are the same). The WIN_FORMULA
variable defines how to convert the distance into a mark. It defines the first arguments
of a call to win.pl. See documentation of this utility for more details.

FW4EX_SHOW_SCRIPT

This boolean variable controls whether the student’s script will be displayed or not. Byt
default, the script is displayed.

FW4EX_SHOW_SCRIPT=${FW4EX_SHOW_SCRIPT:-true}

FW4EX_SHOW_COMMAND

This boolean variable controls whether to display the command to run.

FW4EX_SHOW_COMMAND=${FW4EX_SHOW_COMMAND:-true}

Script

The script is sufficiently short to be shown. It uses the basicLib.sh, moreLib.sh and
comparisonLib.sh libraries. The presence of the COMMAND file is already checked.

Show the command that will be run to the student:

if $FW4EX_SHOW_SCRIPT
then

fw4ex_show_script "$COMMAND"
fi

For every data file, run student’s and author’s program and compare:

DATA_NUMBER=$(ls -1 $DATA_DIR/*.${DATA_SUFFIX} | wc -l)
if [[$DATA_NUMBER -eq 0]] ; then exit ; fi
cat <<EOF
<p>
Je vais comparer votre solution et la mienne sur $DATA_NUMBER fichier(s)

8.10. PATTERNS 93

de données.
</p>
EOF

I=0
Iterate on every data file

for data in $DATA_DIR/*.${DATA_SUFFIX}
do

I=$(($I+1))
(

trap ’echo "</section>"’ 0
Describe the test ie show the content of the data file:
echo "<section rank=’$I’>"
fw4ex_show_data_file $I "$data"

Show student’s command:
fw4ex_show_student_command "$COMMAND" \

$LEFT_FLAGS "$data" $RIGHT_FLAGS < $COMMAND_STDIN
Run student’s command:
fw4ex_run_student_command "$COMMAND" \

$LEFT_FLAGS "$data" $RIGHT_FLAGS < $COMMAND_STDIN
and show raw result of this command:
fw4ex_show_student_raw_result
Possible hook for authors:
fw4ex_after_student_run_hook $I "$data"

Run author’s command. If this command is erroneous, errors
will be emitted on stderr and sent to the author.
fw4ex_run_teacher_command "$SOLUTION" \

$LEFT_FLAGS "$data" $RIGHT_FLAGS < $COMMAND_STDIN
fw4ex_show_teacher_raw_result
fw4ex_after_teacher_run_hook $I "$data"

Normalize then show raw results:
if [[-n "$NORMALIZER"]]
then

fw4ex_normalize_and_show_results
fi

Compare normalized results and determine the win:
fw4ex_compare_results

)
done

8.10.6 Nice.sh

This pattern corresponds to an exercise that asks for a command. The command will
be tested against sets of options contained in data files.

This pattern gauges the student’s answer by comparison to the author’s solution.
The command receives the content of some data file as options, the result is in the
stdout. To sum up and using the variables documented below, this pattern may be
roughly characterized as:

$COMMAND $(cat $data)

94 CHAPTER 8. AUTHORS GUIDE

This pattern emits a grading report in French (encoded as UTF-8). Here is a short
example:

NORMALIZER=removeTrailingBlanks
COMPARISON=line
TOTAL_WIN=10
WIN_FORMULA=’triangular 0 0 5 $TOTAL_WIN/$DATA_NUMBER’

removeTrailingBlanks () {
sed -e ’s/ *$//’

}

source $FW4EX_LIB_DIR/Patterns/Nice.sh

Here are the parameters to configure this pattern.

COMMAND

This variable specifies the name of the file that contains the script to run. By default,
this file is named command.

COMMAND=${COMMAND:-command}

COMMAND_STDIN

This variable specifies the standard input to be given to COMMAND. By default, this is
/dev/null.

COMMAND_STDIN=${COMMAND_STDIN:-/dev/null}

SOLUTION

This variable specifies the name of the file that contains a correct solution that is a
command achieving the desired behavior. By default, this pattern assumes that a
perfect pseudo-job exists that contains the appropriate file named by the previous
variable COMMAND.

SOLUTION=${SOLUTION:-$FW4EX_EXERCISE_DIR/pseudos/perfect/$COMMAND}

DATA_DIR

This variable is the name of the directory that contains the test files. By default, test
files are located in the tests/ directory of the tar gzipped exercise. This directory should
be defined with an absolute pathname.

DATA_DIR=${DATA_DIR:-$FW4EX_EXERCISE_DIR/tests}

DATA_SUFFIX

This variable tells the suffix the test files have. By default, the suffix is data. Any file
with that suffix in the DATA_DIR directory is a test file. Test files are used in alphabetic
order.

The number of tests is therefore the number of files in $DATA_DIR/*.$DATA_SUFFIX.
This number will be computed by the pattern and set as the value of the DATA_NUMBER
variable.

DATA_SUFFIX=${DATA_SUFFIX:-data}

8.10. PATTERNS 95

NORMALIZER

This variable contains the name of the command (program + options or internal bash
function as shown in the synopsis above) that normalizes the output of the programs to
compare. You are not required to define this variable if you don’t need normalization.

COMPARISON

This variable contains a word that defines the kind of comparison.

The char comparison computes the Levenshtein distance between the student’s
answer and the author’s answer. The Levenshtein distance should not be used to
compare too long strings.

The line comparison uses the diff utility to count the number of dissimilar lines.

The code comparison compares the exit codes of the student’s and author’s com-
mands.

The int comparison compares the stdout of the student’s and author’s commands.
These stdout are assumed to be integers.

The COMPARISON variable is there to ease switching from one comparison method to
another. If you’re sure you may remove that intermediate and patch the script below.

COMPARISON=${COMPARISON:-char}

TOTAL_WIN

This variable defines the maximal mark that may be won. Given the nature of the
pattern, any test case allows the student to win TOTAL_WIN/DATA_NUMBER (rounded to two
decimals only). To avoid embarrassing rounding, avoid a TOTAL_WIN of 1 with only 3
tests. The total mark will amount to 0.99 instead of 1.

WIN_FORMULA

This variable defines how to compute the number of points a student wins for one
test file. The comparison (determined by COMPARISON) computes a distance: 0 is
perfection (student’s and author’s normalized answers are the same). The WIN_FORMULA
variable defines how to convert the distance into a mark. It defines the first arguments
of a call to win.pl. See documentation of this utility for more details.

FW4EX_SHOW_SCRIPT

This boolean variable controls whether the student’s script will be displayed or not. By
default, the script is displayed.

FW4EX_SHOW_SCRIPT=${FW4EX_SHOW_SCRIPT:-true}

96 CHAPTER 8. AUTHORS GUIDE

FW4EX_SHOW_COMMAND

This boolean variable controls whether to display the command to run.

FW4EX_SHOW_COMMAND=${FW4EX_SHOW_COMMAND:-true}

Script

The script is sufficiently short to be shown. It uses the basicLib.sh, moreLib.sh and
comparisonLib.sh libraries. The presence of the COMMAND file is already checked.

Show the command that will be run to the student:

if $FW4EX_SHOW_SCRIPT
then

fw4ex_show_script "$COMMAND"
fi

For every data file, run student’s and author’s program and compare:

DATA_NUMBER=$(ls -1 $DATA_DIR/*.${DATA_SUFFIX} | wc -l)
if [[$DATA_NUMBER -eq 0]] ; then exit ; fi
cat <<EOF
<p>
Je vais comparer votre solution et la mienne sur $DATA_NUMBER jeux
d’options.
</p>
EOF

I=0
Iterate on every data file

for data in $DATA_DIR/*.${DATA_SUFFIX}
do

I=$(($I+1))
(

trap ’echo "</section>"’ 0
echo "<section rank=’$I’>"

Show student’s command:
fw4ex_show_student_command "$COMMAND" $(cat "$data") "< $COMMAND_STDIN"
Run student’s command:
fw4ex_run_student_command "$COMMAND" $(cat "$data") < $COMMAND_STDIN
and show raw result of this command:
fw4ex_show_student_raw_result
Possible hook for authors:
fw4ex_after_student_run_hook $I "$data"

Run author’s command. If this command is erroneous, errors
will be emitted on stderr and sent to the author.
fw4ex_run_teacher_command "$SOLUTION" $(cat "$data") < $COMMAND_STDIN
fw4ex_show_teacher_raw_result
fw4ex_after_teacher_run_hook $I "$data"

Normalize then show raw results:
if [[-n "$NORMALIZER"]]
then

fw4ex_normalize_and_show_results
fi

8.11. LANGUAGES 97

Compare normalized results and determine the win:
fw4ex_compare_results

)
done

8.11 Languages

This section presents some libraries that are customized for a given programming lan-
guage.

8.11.1 Java

Usually Java classes are tested with help of JUnit (version 3 or 4). JUnit (version 4.11)
is present on the confined VM so you do not need to wrap this jar into your exercise
(unless you do not want to depend on that precise version).

Some classes are provided: org.fw4ex.junit.Assert, org.fw4ex.junit.TestRun and org.fw4ex.junit.ProgressiveTestRun.
If you statically import org.fw4ex.junit.Assert instead of the usual org.junit.Assert you
get the same capabilities plus one: assertions are counted. This helps to grade a stu-
dent since tests, assertions and failures are counted.

The second class org.fw4ex.junit.TestRun allows to run a series of test classes and
emit, on its standard output stream, the resulting figure wrapped within three square
brackets to make them easily parsable.

java -cp bin:$FW4EX_JUNIT_JAR org.fw4ex.junit.TestRun \
org.fw4ex.junit.test.NumerousAssertionsTest

FW4EX JUnit version 4.11
..
Time: 0.011

OK (2 tests)

[[[103 Assertions, 3 Tests, 0 Failures]]]

Here follows the org.fw4ex.junit.test.NumerousAssertionsTest test class as an example:

// Copyright (C) Christian.Queinnec@upmc.fr
// GPL v2.

package org.fw4ex.junit.test;

/* Just a small class of JUnit tests with 2 tests and 102 assertions. */

import static org.fw4ex.junit.Assert.*;

import org.fw4ex.junit.Assert;
import org.fw4ex.junit.Fw4exResult;
import org.junit.*;

public class NumerousAssertionsTest {

@BeforeClass
public static void setup () {

if (null == Assert.getResult()) {
Assert.setResult(new Fw4exResult(null));

98 CHAPTER 8. AUTHORS GUIDE

}
}

@Test
public void test100assertions () {

for (int i=0 ; i<100 ; i++) {
assertTrue(true);

}
assertEquals(100, Assert.getResult().getAssertionCount());
assertEquals(101, Assert.getResult().getAssertionCount());

}

protected int count = 0;
@Test(expected=Throwable.class)
public void testAbort () {

if (count++ < 1000) {
testAbort();

} else {
count = 1/(count/1001 - 1);

}
}

}

However, org.fw4ex.junit.TestRun is not very robust since, if the output of a command
is truncated then the last line will be lost. A more robust way is to use the third class,
org.fw4ex.junit.ProgressiveTestRun as in:

% java -cp bin:$FW4EX_JUNIT_JAR org.fw4ex.junit.ProgressiveTestRun \
-f $TMPDIR/lastResults.sh \
org.fw4ex.junit.test.NumerousAssertionsTest

FW4EX JUnit version 4.11
..
Time: 0.011

OK (2 tests)
% cat $TMPDIR/lastResults.sh
ASSERTIONS=102
TESTS=2
FAILURES=0

The -f option allows to specify the file where the progress of the state of the test is
recorded. This state is incremented for each test method, each assertion, each failure.
Just source that file to get the three interesting variables.

There is a small difference on the number of assertions. org.fw4ex.junit.TestRun

prints the number of checked assertions whereas org.fw4ex.junit.ProgressiveTestRun prints
the number of attempted assertions. The two number are the same when there is no
failure. Should some failures occur, then you must subtract FAILURES from ASSER-
TIONS to get the number of successfully checked assertions.

The path to the JUnit jar and these additional classes are held in variables FW4EX_JUNIT_JAR

and FW4EX_JAVA_BIN.

8.11.2 Octave

See 8.12 for an example com.paracamplus.lt216.1 in Octave.

8.12. EXAMPLES 99

8.11.3 MzScheme

See 8.12 for an example org.fw4ex.li101.l2p in MzScheme.

8.12 Examples

Some examples of exercises (tar gzipped files) that may inspire authors are provided on
the CodeGradX site. This section presents them and some of their characteristics so
you may choose which one to start with.

bash org.example.li362.sh.7 This example uses the Gap pattern and asks for a little
bash script.

bash org.fw4ex.li218.devoir.2010nov This exercise defines three separate questions
and comes equipped with some accompanying files.

tr org.example.li362.tr.4 This example uses the BourgEnBresse pattern and asks for
some options to give to the tr utility.

c org.example.li205.function.1 This is an example of an exercise asking for a C func-
tion.

java org.example.li314.java.3 This example compiles then tests a Java class that should
implement a specified interface (this interface is available for the student). Tests
are run using a refined version of JUnit.

mzscheme org.fw4ex.li101.l2p This example tests a Scheme function. This binding is
very ugly and will be refined one day.

octave org.example.lt216.1 This example tests an Octave function. Fortunately Octave
provides a sort of try-catch-finally making tests somewhat more robust.

https://codegradx.org/CodeGradX/Resources/
https://codegradx.org/CodeGradX/Resources/Exercises/org.example.li362.sh.7.tgz
https://codegradx.org/CodeGradX/Resources/Exercises/org.fw4ex.li218.devoir.2010nov.tgz
https://codegradx.org/CodeGradX/Resources/Exercises/org.example.li362.tr.4.tgz
https://codegradx.org/CodeGradX/Resources/Exercises/org.example.li205.function.1.tgz
https://codegradx.org/CodeGradX/Resources/Exercises/org.example.li314.java.3.tgz
https://codegradx.org/CodeGradX/Resources/Exercises/org.fw4ex.li101.l2p.tgz
https://codegradx.org/CodeGradX/Resources/Exercises/org.example.lt216.1.tgz

100 CHAPTER 8. AUTHORS GUIDE

Chapter 9

Campaign management

In order to compute some meaningful statistics, students must be grouped in cohorts
and appreciated with respect to their cohort. Hence the concept of campaign.

A campaign is associated to

1. a selection of exercises,

2. a group of students,

3. a group of teachers,

4. a starting date

5. an ending date.

Campaigns are created by the CodeGradX administrators. The teachers of a cam-
paign are the registered users belonging to the group of teachers of that campaign.
Quite often, the students accessing a selection of exercises are adjoined to the students
of the corresponding campaign.

9.1 Set of exercises

The Web servers displaying the set of exercises of a campaign, fetch that list from an X
server. Teachers of that campaign can alter that list of exercises with new exercises or
new version of former exercises.

GET /exercisesset/path/ID return a JSON document de-
scribing a set of exercises

PUT /exercisesset/path/ID set or replace a set of exer-
cises with a JSON document

POST /exercisesset/path/ID set or replace a set of exer-
cises with a JSON document

PUT /exercisesset/yml2json/ID set or replace a set of exer-
cises with a YAML document

POST /exercisesset/yml2json/ID set or replace a set of exer-
cises with a YAML document

In the previous URLs, ID is the name of the set of exercises. Quite often, this is the
name of the associated campaign.

The YAML format is the simpler, it will be compiled into a JSON document (not
recommended since more difficult to write). Here is an example:

101

102 CHAPTER 9. CAMPAIGN MANAGEMENT

exercises:

prologue: |
Some exercises in Javascript.
This is a multi-line text.

1:
title: Functions and Closures
1: org.codegradx.js.min3.3
2: org.codegradx.js.min4.2

2:
title: test
epilogue: "fin d’exercices"
1: 11111111-1111-1111-1112-000000000020

The YAML document defines an exercises key containing numeric sub-keys (starting
from 1 and ending with the first missing numeric key). The numeric sub-keys may
contain numeric sub-sub-keys associated to exercise (long) names or exercise UUID.

If an exercise long name is given, it refers to the last version of the exercise with that
name at the time when the YAML document is converted into JSON. If an exercise UUID
is given, it refers to a specific exercise.tgz.

Entries containing numeric keys should have an accompanying title. They may also
have optional prologue and epilogue keys that is, sentences introducing and closing the
list of exercises.

The previous example defines two sections of exercises, the first section contains two
exercises with an explicit title, the second section contains only one exercise. It is also
possible to avoid sections and to propose directly three exercises as in:

exercises:

prologue: |
Some exercises in Javascript.
This is a multi-line text.

title: functions
1: org.codegradx.js.min3.3
2: org.codegradx.js.min4.2
3: 11111111-1111-1111-1112-000000000020
epilogue: "fin d’exercices"

Chapter 10

Grading engine

This chapter describes how the fw4ex.xml is processed when a job is graded.
The grading engine uses UTF-8 everywhere. To avoid problems, your scripts should

use the same encoding.

10.1 Exercise life-cycle

This section describes the life-cycle of an exercise. When submitted to the CodeGradX
platform, an exercise passes through a series of steps described hereafter.

Archival An UUID is given to this new exercise.

Autocheck The pseudo-jobs contained in the exercise are graded in order to know if the exer-
cise is coherent. This allows to detect a VM misfit where some programs required
by the exercise are not present in the VM. A report is generated for the author and
for the CodeGradX maintaineer.

Deployment If the autocheck step succeeds, the exercise will be deployed that is, made available
for students.

There is a specific life-cycle when grading:

Installation The exercise targz is copied and inflated somewhere within the VM.

Initialization The exercise is initialized, that is the initializing element from the fw4ex.xml file
is run under an author account in the FW4EX_EXERCISE_DIR directory that belongs to
this author. It is not advised to create any file out of this directory (not even in
/tmp/).

Grading After a successful initialization, the exercise is ready to process students’ files (see
next section for details).

Uninstallation After grading jobs, the exercise may be uninstalled that is, the HOME directory of
the author account is entirely deleted. The exercise may be installed and unin-
stalled before and after each grading. It is up to the VM to choose (if it has enough
room) to keep an installed exercise to grade future jobs.

10.2 Shells and streams

The grading element from the fw4ex.xml file is compiled into a shell script hereafter
named exercise.sh. This compilation is a delicate balance involving shells, streams and
confined scripts. Here follows a short description of the process.

103

104 CHAPTER 10. GRADING ENGINE

First of all, the grading script (the exercise.sh file below) will be run under the identity
of a student something like:

{ cat exercise.sh | su - student 3>out.xml 4>err.txt
} 1>fw4ex-outerr.txt 2>&1

If the grading script produces some results or warnings on its stdout and stderr,
these will be sent to the CodeGradX maintaineer (since he is the writer of the compiler
that produces that script). The err.txt file will gather the stderr produced by the au-
thor’s scripts and will be sent back to the author. The out.xml is an XML file jointly
produced by the grading script and the authors’ script and will be sent to the student.
This is an XML file and great care is taken to make it well formed and valid with re-
spect to the CodeGradX grammar. If the out.xml is not valid, nothing will be sent to the
student but the author will be notified of the problem in his err.txt file.

The grading script is made of three possible blocks. The first block is a prolog
that defines some functions and variables. The other blocks might be script blocks or
question blocks; they may appear more than once and they may be mixed at will. A
question block is made of a prolog that defines some variables common to the question
and of a number of script blocks. A script block is made of a prolog that defines
some variables common to the block: some shell expressions that runs in a confined
environment.

See Figure 10.1 for an example of a grading script.

prolog
script-block1
script-block2
question -block3
question -block4
script-block5

Figure 10.1: Grading script structure (example)

A sketch of a script block appears on Figure 10.2. The author script runs in a
confined environment within a sub-shell, its stdout will be sent (after some massaging)
to the student (in the out.xml file) while its stderr will be appended to the author’s
report (in err.txt). The exit code of the author’s script is analysed. A non-null exit code
may abort the whole exercise, the sole question or simply be ignored depending on the
iferror attribute in the script element.

(some limits
some environment settings
confine author-script 1>out 2>err 3>/dev/null 4>/dev/null

) </dev/null
massage out 1>&3 2>>err
append err 1>&4
clean up temporary files out and err
react to confined author-script exit code

Figure 10.2: Script block structure

A sketch of a question block appears on Figure 10.3. A question knows its name
from the environment. The files concerning the question and expected from the student
are mecanically checked. Similarly to the core of a script block, the core of a question
block is run in a sub-shell. The stdout and stderr of this subshell will be sent to
the CodeGradX maintaineer. The stream 3 will be sent (after some massaging) to the

10.3. CODEGRADX AGENT 105

student (in the out.xml file) while stream 4 will be appended to the author’s report (in
err.txt). The exit code of a question block is analysed. A non-null exit code may abort
the whole exercise or simply be ignored.

(FW4EX_QUESTION_NAME=q1
check expectations
some limits
some environment settings
script-block1
script-block2
script-block3

) </dev/null 3>out 4>err
massage out 1>&3 2>>err
append err 1>&4
clean up temporary files out and err
react to question exit code

Figure 10.3: Question block structure

The reaction of a script depends on whether it is run within a question or not. The
specification abort question is non-sense when applied to a script that runs out of a
question. The specification abort exercise is implemented as exit 1, the specification
abort question when meaningful is implemented as exit 0, the specification next script
is implemented as a no-op.

10.3 CodeGradX agent

A small server (the T server) is available for authors in order to autocheck their ex-
ercises. With this server, you upload an exercise (a targz file), it is autochecked and
you get back a report telling you how are graded the various pseudo-jobs contained in
the exercise. However, this is not conveniently automatizable. Therefore, a CodeGradX
agent is provided in order to automatize the autochecking phase of an exercise and
the grading of a batch of submissions. Here follow a series of examples of use of the
CodeGradX agent.

ATTENTION: the CodeGradX agent is written in particularly dirty Perl code and is
no longer maintained. A new agent, written in JavaScript, exists but requires Node.js
to run: see 10.4.

10.3.1 Authenticating

In order to interact with the CodeGradX servers, you need to authenticate. You may
then use the --user and --password options as in:

fw4ex-agent.pl --nosend --user=XXX --password=YYYY

However the --password option is dangerous since any other program running on the
same machine may read it. Another, more secure, way is to provide this information
via the --credentials option naming a file where login and password are stored. Be sure
to protect this file!

fw4ex-agent.pl --nosend

The mentioned file is a YAML file (by default, this is .fw4ex.yml stored in the current
directory) such as:

https://t.codegradx.org/

106 CHAPTER 10. GRADING ENGINE

password: XXXXX
login: YYYYY

The --update-credentials updates this file and adds a line defining the cookie to use
for further interactions. After the following command:

fw4ex-agent.pl --nosend --update-credentials

The file .fw4ex.yml then becomes:

login: YYYYY
password: XXXXX
cookie: UUUUUUUUUUUUUUUUUUUUUUUUUUUU...@@

Authentication is performed with help from the X server. If you want to specify
yourself the authentication server, use the --xserver and --xprefix options.

10.3.2 Obtaining exercises

If you want to act as as student and in order to submit jobs towards an exercise, you
need to know the URL representing the exercise. CodeGradX does not let you guess
these URL so you have to obtain them for instance via a /path/PPP request where PPP is
the name of the set of exercises. Most often there is a dedicated (skinning) server for
the set of exercises appropriate for a course.

fw4ex-agent.pl --type=path --path=li218 --report ./li218.xml

This command fetches the XML document (an exercisesPath) for the group of exer-
cises named li218 and stores it in the li218.xml file. The beginning of this document
looks like (we split the long URL in order to fit line length):

<?xml version=’1.0’ encoding=’utf-8’ ?>
<fw4ex version=’1.0’ xml:lang=’fr’ lang=’fr’>
<exercisesPath name=’li218’>
<and>
<set>

<title>Autour de la commande <code>tr</code></title>
<exercise exerciseid=’11111111-1111-1111-2222-000000000001’

location=’https://e.codegradx.org/exercisecontent/UA6tDmMIAG2DWXuUJqsD_DQ
OySiRcMCP1hBJEZXkDksLqvTXZt7l5Crsx -NsUONRfhw5Z8Cs8mO95jscxvHc5VZ0GodaDlS6
h13BRHUrtOWXJB78gtEuBFGkQnbiSr -hVcYNQylonhj4Ks2kAVeKK6ygxu9n8QnRY7mDC7teK
81y15c2PN1SAt6ixUcHWWcZVpmiqd3AKt4YDfuiq27saVbyg0K68 -P4UP2y2wxUDYENnjnJAE
mGJVnVSv1vb9TflMKgrDkDSiZ7_0d1Zb4kNpUTJBS_zhjDTE64jBtxjFBROQAxAzciRJfd5K9
8x9KSjJ07ik792Pdn7UIp_82fZTQ@@ ’>

<identification name="org.example.li362.tr.1"
nickname="majusculer" date="2008-08-27T14:52:00Z">

<summary> Convertir en majuscules </summary>
<tags>
<tag name="UPMC"/>...

The exercise elements display the URL where may be found an exercise.
If the --report option is absent, the XML document is produced on the standard

output.
By default, the CodeGradX agent uses the E server. You may change that with the

--eserver and --eprefix options.

10.3. CODEGRADX AGENT 107

10.3.3 Posting a job

If you want to act as as student in order to submit a file to be graded may also
be done with the CodeGradX agent. Let us suppose that we try to answer the ex-
ercise 11111111-1111-1111-2222-000000000001. We first store our answer in file
/tmp/options (the name of the file is specified by the exercise) then we tar gzip our an-
swer in /tmp/options.tgz then we post it (we split the long URL in order to fit line length).

echo -n ’[0-9][0-9]*.txt’ > /tmp/options
tar czf /tmp/options.tgz -C /tmp options
fw4ex-agent.pl --exercise ’UA6tDmMIAG2DWXuUJqsD_DQOySiRcMCP1hBJEZXkDksLqvTX

Zt7l5Crsx -NsUONRfhw5Z8Cs8mO95jscxvHc5VZ0GodaDlS6h13BRHUrtOWXJB78gtEuBFGkQ
nbiSr-hVcYNQylonhj4Ks2kAVeKK6ygxu9n8QnRY7mDC7teK81y15c2PN1SAt6ixUcHWWcZVp
miqd3AKt4YDfuiq27saVbyg0K68 -P4UP2y2wxUDYENnjnJAEmGJVnVSv1vb9TflMKgrDkDSiZ
7_0d1Zb4kNpUTJBS_zhjDTE64jBtxjFBROQAxAzciRJfd5K98x9KSjJ07ik792Pdn7UIp_82f
ZTQ@@’ --stuff /tmp/options.tgz

This will return an XML document (a jobStudentReport) on the standard output, you
may store it in a file with the --report option. This

<?xml version="1.0" encoding="UTF-8"?>
<fw4ex version="1.0">
<jobStudentReport jobid="F8014F84 -F7EF-11DF-8F78-B025982070F4">
<marking archived="2010-11-24T17:26:27"

started="2010-11-24T17:26:27Z"
ended="2010-11-24T17:26:28Z"
finished="2010-11-24T17:26:30"
mark="0" totalMark="4">

<machine nickname="Debian 4.0r3 32bit" version="1"/>
<exercise exerciseid="F51F66D4F7EF11DF9440A90D982070F4"/>

</marking>
<report>

<FW4EX phase="begin" what="grading" when="2010-11-24T17:26:27Z"/>
<FW4EX what="initializing"/>
<FW4EX phase="begin" what="running script gCWYgae5s4"

when="2010-11-24T17:26:27Z"/>
<p> Voici donc la commande que vous avez choisie:
<pre>
ls [0-9][0-9]*.txt
</pre></p>
<p>
Je vais comparer votre solution et la mienne sur 4

... Many elements omitted ...
<FW4EX what="exit code 0"/>
<FW4EX phase="end" what="question q3" when="2010-11-24T17:26:28Z"/>
<FW4EX phase="end" what="grading" when="2010-11-24T17:26:28Z"/>

</report></jobStudentReport ></fw4ex>

Grading an exercise may last a long time depending on the exercise (typically from
10 to 100 seconds). The CodeGradX agent busily waits for the report: some options
may customize this waiting. The --retry option specifies how many times, the agent will
try to download the final report. The --offset option specifies the number of seconds
before asking for the report the first time. The --timeout option specifies the number
of seconds to wait before two trials. Reasonable defaults exist for these options (5 for
retry, 8 for offset, 3 for timeout).

By default, the CodeGradX agent uses the A server to post jobs and the S server to
get the final report. You may change that with (respectively) the --aserver and --aprefix

options and the --sserver and --sprefix options.

108 CHAPTER 10. GRADING ENGINE

If you prefer an HTML report rather than an XML report, you have to pass through a
skinning server such as li218.codegradx.org. You may specify your own skinning server
with the --skinserver and --skinprefix options. The --skin option tells the CodeGradX
agent that you want to use the default skinning server.

To copy-paste long URLs is painful therefore another syntax is available to specify
an exercise. The URL file:li218.xml#33 represents the 33rd exercise in the file li218.xml.
Therefore to obtain the HTML report corresponding to the previous example, one may
write:

fw4ex-agent.pl --exercise ’file:li218.xml#33’ --stuff /tmp/options.tgz --skin

Sometimes, the retry, timeout and offset parameters are inappropriate. You must
first be aware of the requests that are exchanged between the agent and the server (see
chapter11). When you post a job, you receive a jobSubmittedReport XML answer from
which you may know of the URL where you will get the jobStudentReport. Here is an
example of a jobSubmittedReport:

<?xml version="1.0" encoding="UTF-8" ?>
<fw4ex version="1.0">

<jobSubmittedReport
location="/s/7/B/1/A/9/4/7/2/F/7/F/D/1/1/D/F/A/8/E/E/D/0/2/0/9/8/2/0/7/0/F/4">
<job archived="2010-11-24T19:03:11"

jobid="7B1A9472-F7FD-11DF-A8EE-D020982070F4" />
<person personid="1000" />
<exercise exerciseid="11111111-1111-1111-2222-000000000003" />

</jobSubmittedReport >
</fw4ex>

To ease submission, instead of sending a targzipped file, you may just specify the
directory to send and the CodeGradX agent will targzip the directory for you. Therefore,
you may alternatively say (pay attention not to send huge amount of data such as *~

files, .svn directories, etc.):

fw4ex-agent.pl --exercise ’file:li218.xml#33’ --stuff /tmp/options/ --skin

You may restart the command to wait again for the jobStudentReport if you tell the
CodeGradX agent where is the jobSubmittedReport. Intermediate answers from the Code-
GradX servers are stored in the current directory (or another directory if you use the
--xmldir option) under name 0.xml, 1.xml etc. (you may set the initial value of the counter
with the --counter option). Therefore, when you post a job, you receive (by default) the
jobSubmittedReport as 0.xml. You may restart the command with:

fw4ex-agent.pl --type=jobcontent:0.xml --offset=0 --counter=10 --skin

Here we don’t wait (offset is null), we reset the counter to 10 so the answer will not
clobber the 0.xml file and we still ask for an HTML report.

10.3.4 Posting multiple jobs

Sometime a teacher gets a number of students’ files corresponding to a single exercise
and wants to grade all of them in one go. It is possible to submit a batch of jobs. Let us
suppose that we have two student’s files in /tmp/1.tgz and /tmp/2.tgz.

mkdir /tmp/1 /tmp/2
echo -n ’??*.txt’ > /tmp/1/options
tar czf /tmp/1.tgz -C /tmp/1 .
echo -n ’0-9*txt’ > /tmp/2/options
tar czf /tmp/2.tgz -C /tmp/2 .

10.3. CODEGRADX AGENT 109

Since this is the teacher that submit the students’ files and not the students them-
selves, a multiJobSubmission XML document is required to accompany the students’ files.
This document must list the targzipped files containing the students’ files. Addition-
ally, you may add a global label to identify this batch (this is particularly useful if you
evolve the exercise and want to send this batch again). You are advised to add a label
to each job. This label is important since this is the key, for the teacher, to relate a file
to the concerned student. Note however that the CodeGradX platform only knows the
requester of the batch (that is the teacher) but ignores who are the concerned students.
These labels will be given back with the batch report so you may be able to process
them and relate students to their reports.

cat > /tmp/fw4ex.xml <<EOF
<?xml version=’1.0’ encoding=’UTF-8’ ?>
<fw4ex version=’1.0’>

<multiJobSubmission label=’batch.test.sh.1’>
<job label=’premiere copie, etudiant=1234’ filename=’1.tgz’ />
<job label=’seconde, { etudiant: 456}’ filename=’2.tgz’ />

</multiJobSubmission >
</fw4ex>
EOF

When this XML file is created (check it against the CodeGradX RelaxNG schema),
you may build the whole batch tar gzipped file and submit it with:

tar czf /tmp/batch1.tgz -C /tmp ./fw4ex.xml ./1.tgz ./2.tgz
fw4ex-agent.pl --type=batch --exercise ’file:li218#33’ \

--stuff /tmp/batch1.tgz --offset=30 --timeout=10

In this example, offset and timeout should be set according to the number of files to
grade. If you set them too low and the CodeGradX agent stops working before the batch
is completed, you may resume the agent. You must be aware of the requests that are
involved in a batch submission see chapter 11). Suppose the XML file 0.xml to contain
the multiJobSubmittedReport, you resume the agent with:

fw4ex-agent.pl --type=batchcontent:0.xml

You will get in return a new XML document (a multiJobStudentReport) with the marks
obtained by the students’ files and the URLs of the associated grading reports. The
CodeGradX agent may be used to fetch all the grading reports with the --follow option.
Thus you may write

fw4ex-agent.pl --type=batch --exercise ’file:li218#33’ \
--stuff /tmp/batch1.tgz --follow

In this case, the students reports will appear as files stored in the local directory
(or the directory specified by --xmldir) as 2.xml, 3.xml, etc. The multiJobStudentReport

document tells you how far proceeds the CodeGradX platform, two attributes tell you
the total number of files to grade and the total number of files already graded. You may
resume the agent for instance with:

fw4ex-agent.pl --type=batchcontent:0.xml --offset=90 --timeout=60 \
--follow --counter=100 --skin

Of course, you may also prefer HTML grading reports as shown in the previous
example.

10.3.5 Posting a new exercise

Authors, that is, users of the CodeGradX platform blessed by CodeGradX maintaineers,
may submit new exercises to the platform. If the exercise autochecks well then it will

110 CHAPTER 10. GRADING ENGINE

be automatically deployed and the author receives the URL that identifies this exercise
so he may build a site directing students towards this exercise.

To build an exercise, you must create a tar gzipped file containing all the necessary
files describing the exercise that is, its stem, possibly some accompanying data files,
some pseudo-jobs, the grading scripts and, finally, an XML descriptor binding all these.
When you become an author, you get a personal prefix that you must use to name
all the exercises you will create. This is typically something like fr.lastname.firstname..
Some prefixes are reserved to CodeGradX maintainers.

When posting the exercise (see the involved requests in chapter 11) you receive an
XML document (an exerciseSubmittedReport) telling you where will pop up the exerciseAuthorReport.
Here is an example of an exerciseSubmittedReport:

<?xml version="1.0" encoding="UTF-8"?>
<fw4ex version=’1.0’>

<exerciseSubmittedReport
location=’/s/F/5/1/F/6/6/D/4/F/7/E/F/1/1/D/F/9/4/4/0/A/9/0/D/9/8/2/0/7/0/F/4’
jobid=’F51F66D4-F7EF-11DF-9440-A90D982070F4 ’ >

<person personid=’1000’ />
<exercise exerciseid=’F51F66D4 -F7EF-11DF-9440-A90D982070F4 ’ />

</exerciseSubmittedReport >
</fw4ex>

The final report (the exerciseAuthorReport XML document) will contain the URLs of the
grading reports associated to the pseudo-jobs. Here is the beginning of such an XML
document:

<?xml version="1.0" encoding="UTF-8"?>
<fw4ex version="1.0">
<exerciseAuthorReport exerciseid="F51F66D4 -F7EF-11DF-9440-A90D982070F4"

safecookie="UhKv56QcMNhImwZmOz -WZ0uV2l1eg.....@@">
<identification name="org.fw4ex.li218.devoir.2010nov"
nickname="li218-devoir -2010nov" date="2010-10-29T19:46:06">
<summary> Devoir LI218 de novembre 2010 </summary>
<tags><tag name="UPMC"/><tag name="li218"/><tag name="shell"/></tags>
<authorship >
<author>
<firstname >Christian </firstname >
<lastname >Queinnec </lastname >
<email>Christian.Queinnec@upmc.fr</email>

</author>
</authorship >

</identification >
<pseudojobs >
<pseudojob jobid="F8014F84 -F7EF-11DF-8F78-B025982070F4"

location="/s/F/8/0/1/4/F/8/4/F/7/E/F/1/1/D/F/8/F/7/8/B/0/2/5/9/8/2/0/7/0/F/4"
problem="1" duration="2">

<submission name="null" expectedMark="0">
<content directory="pseudos/null"/>

</submission >
<marking archived="2010-11-24T17:26:27"

started="2010-11-24T17:26:27Z"
ended="2010-11-24T17:26:28Z"
finished="2010-11-24T17:26:30"
mark="0" totalMark="4">

<machine nickname="Debian 4.0r3 32bit" version="1"/>
<exercise exerciseid="F51F66D4F7EF11DF9440A90D982070F4"/>

</marking>
</pseudojob >

<!-- other pseudojobs omitted ... -->

10.3. CODEGRADX AGENT 111

</pseudojobs ><report/></exerciseAuthorReport ></fw4ex>

Suppose the exercise be built as exo.tgz, then to submit it via the CodeGradX agent,
write (after adjusting the offset, retry and timeout parameters if needed):

fw4ex-agent.pl --type=exercise --stuff exo.tgz \
--offset=40 --follow --skin

Of course, if you did not get all the pseudo grading reports, you may ask the agent
to resume its work (where 1.xml is the exerciseAuthorReport) with:

fw4ex-agent.pl --type=exercisecontent:1.xml --follow --skin

When the exercise is autochecked successfully the exerciseAuthorReport contains the
safecookie where it is deployed. If we suppose that 1.xml holds this report then you
may post a job towards this exercise with the following syntax (so you don’t have to
copy-paste the URL):

fw4ex-agent.pl --type=job --exercise ’file:1.xml’ --stuff /tmp/options/ --skin

Options

The agent offers a number of options that might be tweaked. Here is the set of available
options:

Can’t locate WWW/Mechanize.pm in @INC (you may need to install the WWW::Mechanize module) (@INC contains: /home/queinnec/Paracamplus/ExerciseFrameWork -V2/Scripts/../perllib /home/queinnec/perl /etc/perl /usr/local/lib/x86_64-linux-gnu/perl/5.22.1 /usr/local/share/perl/5.22.1 /usr/lib/x86_64-linux-gnu/perl5/5.22 /usr/share/perl5 /usr/lib/x86_64-linux-gnu/perl/5.22 /usr/share/perl/5.22 /usr/local/lib/site_perl /usr/lib/x86_64-linux-gnu/perl-base .) at ../../Scripts/fw4ex-agent.pl line 183.
BEGIN failed--compilation aborted at ../../Scripts/fw4ex-agent.pl line 183 (#1)

(F) You said to do (or require, or use) a file that couldn’t be found.
Perl looks for the file in all the locations mentioned in @INC, unless
the file name included the full path to the file. Perhaps you need
to set the PERL5LIB or PERL5OPT environment variable to say where the
extra library is, or maybe the script needs to add the library name
to @INC. Or maybe you just misspelled the name of the file. See
"require" in perlfunc and lib.

Uncaught exception from user code:
Can’t locate WWW/Mechanize.pm in @INC (you may need to install the WWW::Mechanize module) (@INC contains: /home/queinnec/Paracamplus/ExerciseFrameWork -V2/Scripts/../perllib /home/queinnec/perl /etc/perl /usr/local/lib/x86_64-linux-gnu/perl/5.22.1 /usr/local/share/perl/5.22.1 /usr/lib/x86_64-linux-gnu/perl5/5.22 /usr/share/perl5 /usr/lib/x86_64-linux-gnu/perl/5.22 /usr/share/perl/5.22 /usr/local/lib/site_perl /usr/lib/x86_64-linux-gnu/perl-base .) at ../../Scripts/fw4ex-agent.pl line 183.
BEGIN failed--compilation aborted at ../../Scripts/fw4ex-agent.pl line 183.

Conclusions

Typically, one may write the following in a Makefile in order to build, test an exercise
and grade some jobs with this exercise. We suppose the tar gzipped files of the students
to be in a students/ directory. The name.queinnec.essai.1 is the directory holding the
exercise. Of course, you should set up the various options --offset, --retry, --timeout

depending on the duration of the autocheck and batch processing.

AGENT=fw4ex-agent.pl
EXONAME=name.queinnec.essai.1
STUDENTS=students

all : ${EXONAME}.tgz post.exercise post.batch

${EXONAME}.tgz :
xmllint --noout --relaxng fw4ex.rng ${EXONAME}/fw4ex.xml
tar czf ${EXONAME}.tgz -C ${EXONAME} .

post.exercise : ${EXONAME}.xml
${EXONAME}.xml :

${AGENT} --nosend --update-credentials

112 CHAPTER 10. GRADING ENGINE

-rm ${EXONAME}.xml
${AGENT} --type=exercise --stuff ${EXONAME}.tgz --offset=90 --follow --skin
grep safecookie 1.xml
cp -p 1.xml ${EXONAME}.xml

batch.tgz :
-rm -rf batch
-rm -f batch.tgz
mkdir batch
echo "<?xml version=’1.0’ encoding=’UTF-8’?><fw4ex version=’1.0’> \

<multiJobSubmission label=’$$(date)’>" > batch/fw4ex.xml
for tgz in $$(cd ${STUDENTS}; ls *.tgz) ; do \

echo "<job label=\"$$tgz\" filename=\"$$tgz\" />" ; \
done >> batch/fw4ex.xml
echo "</multiJobSubmission ></fw4ex>" >> batch/fw4ex.xml

xmllint --noout --relaxng fw4ex.rng batch/fw4ex.xml
cp -p ${STUDENTS}/*.tgz batch/
tar czf batch.tgz -C batch .

post.batch : ${EXONAME}.xml batch.tgz
${AGENT} --type=batch --exercise=file:${EXONAME}.xml \

--stuff batch.tgz --counter=10 --follow --skin

get.batch.results :
${AGENT} --type=batchcontent:10.xml --offset=0 --follow --skin

In this Makefile, the labels of the jobs are not very useful unless the name of the
students’ files allow the teacher to determine to which student they belong.

10.4 The new CodeGradX agent in JavaScript

This new agent offers the same interface as the old agent in Perl. It requires Node.js (a
JavaScript engine) to be present.

10.4.1 Installation

Use npm the Node Package Manager as in:

npm install -g codegradxagent

If you want to use the agent with the VM for authors, you need an additional
NPM module: codegradxvmauthor. Install it with the following command and use the
codegradxvmauthor command as the codegradxagent command.

npm install -g codegradxvmauthor

As all NPM modules, you’ll find more information on the NPM site.
These two agents are supported by the codegradxlib and codegradxenroll NPM mod-

ules. These two modules are used for Web clients.

10.5 VM for authors

There is a Virtual Machine for authors that provides the full constellation of CodeGradX
servers. You may run it to test and debug your exercises before submitting them to
CodeGradX.

https://www.npmjs.com/package/codegradxagent
https://www.codegradx.org/CodeGradX/VM/

Chapter 11

XML formats

This chapter describes the XML formats that are used internally or externally. All XML
files are wrapped within a fw4ex element and contain another unique element naming
the kind of XML document. A single grammar named fw4ex.rnc (in RelaxNG compact
form) rules them all.

The rest of this chapter is directly generated from fw4ex.rnc file.

11.1 Grammar

This grammar describes the content of all XML files read or generated by the FW4EX
system. All these XML documents have a root element named fw4ex with a version
attribute.

Where an attribute is optional, its default value is specified via an annotation be-
longing to the annotation namespace.

namespace annotation = "http://paracamplus.org/fw4ex/annotation/1.0"

start = fw4ex

There are a number of documents used for the various exchanges between stu-
dents, teachers and servers. Students don’t have to be aware of these documents.
Authors should focus on the exerciseSubmission document that describes an exercise
and, possibly, on the structure of the jobStudentReport generated by exercises. Deploy-
ers (teachers or web programmers) that want to connect their site to FW4EX should
focus on the exerciseContent or exerciseStem, jobStudentReport.

jobSubmission

This document is an internal document generated by an acquisition server when
receiving some files. These files and this XML document named fw4ex.xml form
a job that is, a tar gzipped file containing them all. The fw4ex.xml file gathers
who is the student, what exercise is targeted, when the files were received. It also
attributes an UUID to the job. This fw4ex.xml is packed with the files sent by the
student (in a content/ directory) to form the job.

jobSubmittedReport

This document is the answer of an acquisition server when receiving a job submis-
sion. This acknowledgement is returned to the student. This document contains
the information from the jobSubmission document. It also returns a location in-
formation that is, an URL where the grading report will appear. The location value
is derived from the UUID christening the job.

113

114 CHAPTER 11. XML FORMATS

exerciseSubmission

This document is an internal document generated when a fresh exercise is received
by an exercise server. This XML document named fw4ex.xml gathers who is the
author, when the exercise was received, if it is a new version of an old exercise.
An UUID is given to the exercise that will follow the auto-checking phase of the
exercise.

acquisitionServerState

This document describes the state of the acquisition server that is, it lists all the
jobs that are waiting to be marked on the acquisition server. This is an internal
document answered by the acquisition server to requests formed by administrative
servers (and mainly the marking driver).

exerciseServerState

This document describes the state of the exercise server that is, it lists all the
exercises that are present on the exercise server. This is an internal document
answered by the exercise server to requests formed by administrative servers (and
mainly the marking driver).

jobStudentReport

When a job is marked, the grading report is a jobStudentReport XML document.
It is identified by the job UUID, it contains the text (the report) generated by the
exercise and, finally, it contains a summary of the marking result (the mark, the
total mark possible, the various dates when the report was generated).

jobAuthorReport

When a job is marked, it is possible that the programs of the author of the exercise
generate anomalies. These anomalies may prevent the generation of the report to
the student. These anomalies are gathered in a report and returned to the author
to improve the exercise.

jobTrackerReport (FUTURE)

A tracker server is a server that tells where are stored the grading reports for
students. More than one tracker may be requested. A tracker report may mention
more than one storage server if some redundancy is wanted.

exerciseAuthorReport

When an exercise is submitted to the FW4EX system, an autocheck is run in
order to determine if the exercise is well formed, complete and runs correctly.
An exercise contains a number of pseudo-submissions that wil be graded. Their
final mark is compared to the exected final mark. Any anomaly is returned to the
author of the exercise and the exercise will not be deployed that is, not offered to
students.

exercise

The concept of an exercise is the central piece of FW4EX. It is a fairly long text
describing the many aspects of an exercise: what is the stem, the questions, what
are the grading programs, where are the pseudo-copies, etc.

exerciseContent

An exerciseContent is an excerpt of an exercise corresponding to the whole set of
information needed by a student to practice an exercise. It contains the stem, the
data files, the expected content of the student’s submission. Of course, it excludes
the grading programs.

11.2. USE CASES 115

exerciseStem

An exerciseStem is an excerpt of an exerciseContent limited to the stem of the
exercise. This document serves only for convenience for FW4EX clients that do
not want to analyse an exerciseContent in order to extract the stem.

11.2 Use cases

11.2.1 Student’s submission

This is the use case where a student submits some files to be graded against one ex-
ercise. Only XML documents are shown. When receiving such a request, the A server
elaborates a jobSubmission and responds with a jobSubmittedReport. Then marking
drivers poll A servers, inspect acquisitionServerState, choose a waiting jobSubmission,
process it and store the resulting jobStudentReport on the S server.

Student A server Marking Driver
POST a job -> |

V
jobSubmission

|
jobSubmittedReport <-|

|
| <- GET jobs
|-> acquisitionServerState
|
| <- GET one job
|-> jobSubmission

|
V

GET job report -> |
jobStudentReport <-|

11.2.2 Teacher’s batch submission

This is the use case where a teacher submits a batch of students’ files. to be graded.
Only XML documents are shown. The teacher generates a multiJobSubmission, the
A server explodes this multiJobSubmission into multiple jobSubmissions, elaborates a
batchSubmission and responds with a multiJobSubmittedReport. Marking drivers poll
the A servers, get jobSubmission or batchSubmission and store their answers on the S
server.

Teacher A server Marking Driver
POST a batch: |
multiJobSubmission -> |

V
batchSubmission
jobSubmission (many)

|
multiJobSubmittedReport <-|

| <- GET batches
|-> acquisitionServerState
|
| <- GET job one by one...

116 CHAPTER 11. XML FORMATS

|-> jobSubmission
|
| <- GET also the batch
|-> batchSubmission

|
V

GET batch report -> |
multiJobStudentReport <-|

GET job report one by one... -> |
jobStudentReport <-|

11.2.3 Teacher’s exercise submission

This is the use case where a teacher submits an exercise. Only XML documents are
shown. When an exercise is posted, the E server elaborates an exerciseSubmission doc-
ument and answers with an exerciseSubmittedReport. Marking drivers poll E servers,
choose an exercise to autocheck, get it, unwrap it and mark all the pseudojobs the
exercise contains. If the exercise is successfully autochecked, it will be deployed.........

Teacher E server Marking Driver
POST an exercise -> |

V
exerciseSubmission

|
exerciseSubmittedReport <-|

| <- GET exercises
|-> exerciseServerState
|
| <- GET one exercise
|-> exerciseSubmission

|
V

GET exercise report -> |
exerciseAuthorReport <-|

GET job report one by one... -> |
jobStudentReport <-|

GET job author report one by one... -> |
jobAuthorReport <-|

11.3 Root element: fw4ex

An fw4ex element has one mandatory attribute: the version attribute identifying the
version of this grammar. Version numbers have a major.minor structure. Incompatible
changes to this grammar increment the major number. Minor evolutions increment the
minor number.

The optional lang and xml:lang attributes specify the language in which the exercise
is written. French will use the values fr or fr_FR according to the usual standards.

fw4ex = element fw4ex {
attribute version { "1.0" | "1.1" | "1.2" | "1.3" },
language of the exercise:
attribute xml:lang { xsd:language } ?,
attribute lang { xsd:language } ?,

11.4. JOBSUBMISSION 117

Various kind of document:
(jobSubmission
| jobSubmittedReport

| multiJobSubmission
| multiJobSubmittedReport
| batchSubmission

| exerciseSubmission
| exerciseSubmittedReport

| studentHistory
| personHistory
| exercisesList
| exercisesPath
| acquisitionServerState
| exerciseServerState
| jobsList
| groupReport
| authenticationAnswer
| errorAnswer
| constellationConfiguration

| jobStudentReport
| multiJobStudentReport

| jobAuthorReport
| exerciseAuthorReport

| jobTrackerReport

| exercise
| exerciseContent
| exerciseStem

)
}

11.4 jobSubmission

This is an internal document generated by an acquisition server to record a submission
made by a student. This XML document will accompany the submitted files for further
processing by the grading server. It contains three elements to describe the job, the
student (cf. person.id) and the exercise (cf. exercise.id).

The element job contains two mandatory attributes: the archived attribute tells
when the submission was recorded on the acquisition server, the jobid attribute is the
UUID identifying the job.

jobSubmission = element jobSubmission {
mixed {

element job {
a possible label or comment:
attribute label { xsd:string } ?,
date when the job was archived:
attribute archived { xsd:dateTime },
The UUID identifying the job:

118 CHAPTER 11. XML FORMATS

attribute jobid { xsd:NMTOKEN },
An epoch when the corresponding stem was sent to the student:
attribute stemdate { xsd:dateTime } ?

},
The identifier of the student (an int from the Person table):
person.id,
The identifier of the exercise (an UUID):
exercise.id

}
}

11.5 jobSubmittedReport

When a job is submitted, it is archived and a jobSubmissionReport is sent back to the
student as acknowledgement. More precisely, this XML document is sent back to the
FW4EX client software the student is using. This report contains the content of the
jobSubmissionReport but includes an extra information: the location attribute that
defines the URI where the jobStudentReport will appear. Note that this is an URI not an
URL hence the client should know the storage server.

FUTURE: some hints about the possible (storage or tracker) servers may be given in
the optional servers element.

jobSubmittedReport = element jobSubmittedReport {
attribute location { xsd:anyURI },
servers ?,
mixed {

element job {
date when the job was archived:
attribute archived { xsd:dateTime },
The UUID identifying the job:
attribute jobid { xsd:NMTOKEN }

},
The identifier of the student (an int from the Person table):
person.id,
The identifier of the exercise (an UUID):
exercise.id

}
}

11.6 multiJobSubmission

After an examination, a teacher may send, in one go, multiple students’ submissions
to the grading machine. These submissions form a ’batch’. They should be packed
together in a single tar gzipped file with a mandatory accompanying fw4ex.xml. Very
often the layout of the submitted tgz is: # ./fw4ex.xml ./students/1234567.tgz ./stu-
dents/7891234.tgz ... # The accompanying fw4ex.xml gives some additional information
that are completely useless for the grading machinery. However these information are
useful for the teacher since they allow to tag the batch and the results in order to
present derived information to students. This XML needs to be written by the teacher
or some other tool the teacher uses to submit this batch.

multiJobSubmission = element multiJobSubmission {

11.7. MULTIJOBSUBMITTEDREPORT 119

A label given by the teacher to identify the batch. By default,
this is the time when the batch was submitted.
attribute label { xsd:string } ?,
The (tgz) files to grade
element job {

A label given by the teacher to identify the student (if
missing, the label will be equal to the filename). The meaning
of the label is only meaningful for the teacher, its semantics
is unknown from FW4EX.
attribute label { xsd:string } ?,
the filename is a URl telling where one student’s file is within the
whole tgz. Often, this is something such as C<students/1234567.tgz>
attribute filename { xsd:string }

} *
}

11.7 multiJobSubmittedReport

This is the acknowledgement sent to the teacher in response to a post of multiple sub-
missions to grade. It only contains the id of the whole batch in order to get the as-
sociated report which will lead to the grading reports of the individual submissions
contained in the batch.

multiJobSubmittedReport = element multiJobSubmittedReport {
attribute location { xsd:anyURI },
element batch {

date when the jobs were archived:
attribute archived { xsd:dateTime },
The UUID identifying the whole batch of jobs:
attribute batchid { xsd:NMTOKEN }

},
The identifier of the submitter (an int from the Person table):
person.id,
The identifier of the exercise (an UUID):
exercise.id

}

11.8 batchSubmission

This is the XML file stored on an acquisition server that describes a batch of submis-
sions to be graded. The final batch report will be available through an url built after
batchid, the grading reports for the various submissions will be be available via the
various jobid. This XML file is synthesized by an A server from the multiJobSubmission
request.

batchSubmission = element batchSubmission {
attribute label { xsd:string },
attribute archived { xsd:dateTime },
The UUID identifying the whole batch of jobs:
attribute batchid { xsd:NMTOKEN },
The identifier of the teacher who asked for this batch
person.id,

120 CHAPTER 11. XML FORMATS

The identifier of the exercise (an UUID):
exercise.id,
element job {

attribute label { xsd:string },
attribute jobid { xsd:NMTOKEN }

} *
}

11.9 exerciseSubmission

This is an internal document generated by an exercise server when receiving a new
exercise. This document will be packed with the files sent by the author, it records the
author (cf. person.id) and contains some information in attributes: when the exercise
was archived and the UUID attributed to this exercise.

An optional element may specify the UUID of a previous exercise. The submission
should then refer to the same exercise, the submission is therefore a new version of the
exercise. This additional element may only be used by administrators.

exerciseSubmission = element exerciseSubmission {
attribute location { xsd:anyURI },
mixed {

element job {
date when the job was archived:
attribute archived { xsd:dateTime },
The UUID identifying the job:
attribute jobid { xsd:NMTOKEN }

},
The identifier of the author (the requester):
person.id,
exercise.id

}
}

11.10 exerciseSubmittedReport

This document is returned to an author after submitting an exercise. The location field
contains the URL where the report will be stored after autochecking the exercise.

exerciseSubmittedReport = element exerciseSubmittedReport {
attribute location { xsd:anyURI },
attribute jobid { xsd:NMTOKEN },
The int identifying a person:
person.id,
The UUID identifying the exercise:
exercise.id

}

11.11 studentHistory

This report lists the jobs concerning a student.

11.12. PERSONHISTORY 121

studentHistory = element studentHistory {
The identifier of the student:
attribute personid { xsd:positiveInteger },
attribute lastname { xsd:string },
attribute firstname { xsd:string },
attribute pseudo { xsd:string },
The list of jobs
element job {

attribute jobid { xsd:NMTOKEN },
date when the job was archived on server A:
attribute archived { xsd:dateTime },
attribute mark { xsd:decimal },
attribute totalMark { xsd:decimal },
attribute _href { xsd:anyURI },
The identifier of the exercise:
exercise.id,
empty

} *
}

11.12 personHistory

This report lists the jobs, exercises and batches concerning a person.

personHistory = element personHistory {
The identifier of the person:
attribute personid { xsd:positiveInteger },
attribute lastname { xsd:string },
attribute firstname { xsd:string },
attribute pseudo { xsd:string },
[annotation:default = "false"]
attribute author { xsd:boolean } ?,
The list of jobs
element jobs {

element job {
attribute jobid { xsd:NMTOKEN },
date when the job was archived on server A:
attribute archived { xsd:dateTime },
attribute mark { xsd:decimal },
attribute totalMark { xsd:decimal },
attribute _href { xsd:anyURI },
The identifier of the exercise:
exercise.id,
empty

} *
} ?,
the list of exercises
element exercises {

element exercise {
attribute exerciseid { xsd:NMTOKEN },
attribute name { xsd:string },
attribute nickname { xsd:string },
attribute start { xsd:dateTime },

122 CHAPTER 11. XML FORMATS

attribute _href { xsd:anyURI },
empty

} *
} ?,
the list of batches
element batches {

element batch {
attribute batchid { xsd:NMTOKEN },
attribute label { xsd:string },
attribute archived { xsd:dateTime },
attribute _href { xsd:anyURI },
exercise.id,
empty

} *
} ?

}

11.13 exercisesList DEPRECATED in favor of exercises-
Path

This element lists a series of exercises. It tells the exercises a student may choose
among.

exercisesList = element exercisesList {
element exercise {

attribute exerciseid { xsd:NMTOKEN },
attribute location { xsd:anyURI },
identification ?

} *
}

11.14 exercisesPath

This element describes an ordered series of exercises as recommended by a teacher.
Among the set of exercises, some are mandatory, others are suggested. One may also
mixes some text to comment the path.

exercisesPath = element exercisesPath {
attribute name { xsd:NMTOKEN },
exercisesPathItem

}

exercisesPathItem =
exercisesPathItemAnd

| exercisesPathItemOr
| exercisesPathItemSet
| exercisesPathItemNone
| exercisesPathItemExercise
| exercisesPathItemComment

exercisesPathItemExercise = element exercise {
attribute exerciseid { xsd:NMTOKEN },

11.15. CONSTELLATIONCONFIGURATION (FUTURE) 123

attribute location { xsd:anyURI }, # to be removed
attribute uuid { xsd:NMTOKEN } ?, # to be made mandatory (same as exerciseid ???)
identification ?

=cut
}
exercisesPathItemNone = element none {

empty
}
exercisesPathItemComment = element comment {

xhtml.inline.text
}
exercisesPathItemOr = element or {

element title { xhtml.inline.text } ?,
element prologue { xhtml.inline.text } ?,
exercisesPathItem +,
element epilogue { xhtml.inline.text } ?

}
exercisesPathItemAnd = element and {

element title { xhtml.inline.text } ?,
element prologue { xhtml.inline.text } ?,
exercisesPathItem +,
element epilogue { xhtml.inline.text } ?

}
exercisesPathItemSet = element set {

element title { xhtml.inline.text } ?,
element prologue { xhtml.inline.text } ?,
exercisesPathItem +,
element epilogue { xhtml.inline.text } ?

}

11.15 constellationConfiguration (FUTURE)

This document gives information on the available servers and their roles within the
FW4EX constellation. Normally any server of the constellation may answer that docu-
ment so a client may discover the other servers of the constellation.

constellationConfiguration = element constellationConfiguration {
server +

}

servers = element servers {
server +

}

server = element server {
attribute type { ’acquisition’ | ’exercise’ | ’storage’ | ’tracker’ },
attribute name { xsd:NMTOKEN },
attribute priority { xsd:nonNegativeInteger } ?,
attribute urlprefix { xsd:anyURI } ?,
element comment {

text
} ?

}

124 CHAPTER 11. XML FORMATS

11.16 jobTrackerReport (FUTURE)

A tracker server tells on which server(s), the client may find a precise grading report
(given its URI). The tracker server returns an ordered list of possible servers.

jobTrackerReport = element jobTrackerReport {
attribute location { xsd:anyURI },
servers

}

11.17 acquisitionServerState

This document describes the state of an acquisition server. The document is dated
(with the clock of the server). The number attribute specifies how many jobs exist on
the acquisition server waiting to be graded. The number attribute corresponds to the
number of elements job that are children of the acquisitionServerState element.

acquisitionServerState = element acquisitionServerState {
when this request was served:
attribute date { xsd:dateTime },
number of archived jobs (see next tags):
attribute number { xsd:nonNegativeInteger },
As much jobs as specified in the preceding ’number’ attribute:
(element job {

date when the job was archived:
attribute archived { xsd:dateTime },
The UUID identifying the job:
attribute jobid { xsd:NMTOKEN },
How many times this job has been served by an A server:
attribute served { xsd:nonNegativeInteger }

} | element batch {
date when the batch was archived:
attribute archived { xsd:dateTime },
The UUID identifying the batch:
attribute batchid { xsd:NMTOKEN }

}) *
}

11.18 exerciseServerState

This document lists all the fresh exercises stored in the exercise server that need to be
autochecked.

exerciseServerState = element exerciseServerState {
when this request was served:
attribute date { xsd:dateTime },
number of archived exercises (see next tags):
attribute number { xsd:nonNegativeInteger },
As much exercises as specified in the preceding ’number’ attribute:
element exercise {

date when the exercise was archived:
attribute archived { xsd:dateTime },
The UUID identifying the exercise:

11.19. JOBSLIST 125

attribute exerciseid { xsd:NMTOKEN }
} *

}

11.19 jobsList

This element lists a series of jobs related to an exercise.

jobsList = element jobsList {
exercise.id,
element job {

attribute jobid { xsd:NMTOKEN },
date when the job was archived on server A:
attribute archived { xsd:dateTime },
attribute waitduration { xsd:decimal } ?,
attribute markduration { xsd:decimal } ?,
attribute totalduration { xsd:decimal } ?, # wait + mark durations
attribute mark { xsd:decimal },
attribute totalMark { xsd:decimal },
attribute _href { xsd:anyURI },
element person {

attribute personid { xsd:positiveInteger },
attribute lastname { xsd:string },
attribute firstname { xsd:string }

}
} *

}

11.20 authenticationAnswer

This message is used by an authentication server as an answer to a successful authen-
tication. It is also used as an answer to the registration of a new person in order to
describe what is in the database. It the user is an author, also returns the prefix that
he may use to name the exercices he authors.

authenticationAnswer = element authenticationAnswer {
element person {

attribute personid { xsd:positiveInteger },
attribute expirationDate { xsd:dateTime } ?,
attribute lastname { xsd:string } ?,
attribute firstname { xsd:string } ?,
attribute pseudo { xsd:string } ?,
attribute email { xsd:string } ?,
attribute accesslink { xsd:string } ?,
element author {

attribute prefix { xsd:string }
} *

}
}

126 CHAPTER 11. XML FORMATS

11.21 groupReport

This document lists the students of a group and some of their characteristics. Presently,
the skill is an integer between 0 and 100 (100 being the better). If the requester is not
an admin, only pseudoes are given not real names.

groupReport = element groupReport {
attribute synthetized { xsd:dateTime },
attribute groupName { xsd:NMTOKEN },
element person {

attribute personid { xsd:positiveInteger },
attribute lastname { xsd:string } ?,
attribute firstname { xsd:string } ?,
attribute pseudo { xsd:string },
attribute level { xsd:positiveInteger }

} *
}

11.22 groupsReport

This document lists all groups. This requires to be admin.

groupsReport = element groupsReport {
attribute synthetized { xsd:dateTime },
element group {
attribute groupName { xsd:NMTOKEN }

} *
}

11.23 errorAnswer

This message is used whenever some problem is detected. The person element may be
present if the user is correctly authenticated.

errorAnswer = element errorAnswer {
element person {

attribute personid { xsd:positiveInteger },
attribute name { xsd:string },
attribute expirationDate { xsd:dateTime }

} ?,
#element request {
xsd:string # hint about the request FUTURE ???
#} ? ,
element message {

attribute code { xsd:string },
element reason { xsd:string }

}
}

11.24 jobStudentReport

This document is a the grading report generated by FW4EX. The jobid attribute iden-
tifies the job, the marking element sums up the main information synthetized by the

11.25. MULTIJOBSTUDENTREPORT 127

grading engine, the final element report contains the (potentially lengthy) text report.
This text is written with a XHTML-like syntax.

jobStudentReport = element jobStudentReport {
The UUID identifying the job:
attribute jobid { xsd:NMTOKEN },
marking,
element report { xhtml.content }

}

11.25 multiJobStudentReport

Sometimes, a teacher may want to grade a number of submissions in one go: this is
specified by a multiJobSubmission element and acknowledged with a multiJobSubmit-
tedReport. When the submissions are graded, a multiJobStudentReport is returned.
This document tells where are the individual student reports.

multiJobStudentReport = element multiJobStudentReport {
attribute batchid { xsd:NMTOKEN },
attribute archived { xsd:dateTime },
attribute label { xsd:string } ?,
number of entirely graded jobStudentReports:
attribute finishedjobs { xsd:nonNegativeInteger },
total number of jobs to be graded:
attribute totaljobs { xsd:nonNegativeInteger },
element jobStudentReport {

attribute label { xsd:string } ?,
attribute jobid { xsd:NMTOKEN },
attribute location { xsd:anyURI },
[annotation:default = "0"]
attribute problem { "0" | "1" } ?, # default 0
element marking {

attribute started { xsd:dateTime },
attribute finished { xsd:dateTime },
attribute mark { xsd:decimal },
attribute totalMark { xsd:decimal }

}
} +

}

11.26 jobAuthorReport

If the programs (contained in an exercise) grading a job produce errors (on stderr) then
this stderr is wrapped into a report in order to be analysed by the author of the exer-
cise. The report element contains a text since, in presence of anomalies, it is not wise
to expect a valid xml fragment. The marking element sums up the main information
synthetized by the grading programs as far as they work.

jobAuthorReport = element jobAuthorReport {
The UUID identifying the job: This UUID allows the author to get
the associated student report:
attribute jobid { xsd:NMTOKEN },
element marking {

128 CHAPTER 11. XML FORMATS

attribute archived { xsd:dateTime },
date when the VM starts marking the job:
attribute started { xsd:dateTime },
date when the VM ends marking the job:
attribute ended { xsd:dateTime },
the precise marker that graded the job:
machine,
The identifier of the exercise:
exercise.id

},
an unstructured text for authors or fw4ex maintaineer:
element report { text }

}

11.27 exerciseAuthorReport

When an author submits an exercise, the exercise is autochecked that is, all the
pseudo-jobs it contains are graded. This document gathers the jobStudentReports and
jobAuthorReports for all these pseudo-copies.

The exerciseid attribute is an UUID christening the exercise. The identification el-
ement is a copy of the one given by the author in the exercise. The pseudojobs container
contains a sequence of pseudojob elements. Each of them contains an attribute jobid
to identify the generated job for that occasion, a copy of the corresponding submission
element from the exercise and the marking element that sums up the information syn-
thetized by the grading engine.

A general text might be produced in the report element, to gather the anomalies
detected in the descriptor of the exercise (its fw4ex.xml file). Some parts may be missing
if the exercise is badly conditioned (no fw4ex.xml file for instance).

exerciseAuthorReport = element exerciseAuthorReport {
attribute exerciseid { xsd:NMTOKEN },
This attribute is only present when the exercise had been
successfully autochecked. This is a safe cookie allowing the
author to use the freshly autochecked exercise.
attribute safecookie { xsd:string } ?,

identification ?,

element pseudojobs {
number of entirely graded jobStudentReports:
attribute finishedjobs { xsd:nonNegativeInteger },
total number of (pseudo-)jobs to be graded:
attribute totaljobs { xsd:nonNegativeInteger },
element pseudojob {

The jobid gives access to the student’s and author’s reports:
attribute jobid { xsd:NMTOKEN },
attribute location { xsd:anyURI },
[annotation:default = "0"]
attribute problem { "0" | "1" } ?, # default 0
attribute duration { xsd:positiveInteger } ?, # in seconds
submission,
marking ?,
An unstructured text with evidences of problems
element report { text } ?

11.28. EXERCISE 129

} *
} ?,

An unstructured summary text
element report { text } ?

}

11.28 exercise

This document describes an exercise and its various facets. Here follows the meaning
of the great sections composing the description of an exercise.

identification

This section identifies the exercise, its version, its authors.

conditions

This section describes the financial (how much to pay) and technical (which OS,
which language, which proficiency, etc.) conditions associated to the exercise.

equipment

This section describes the files that accompany the exercise, they should be sent
to the student. These may be examples, documentations, data files, etc.

initializing

This section describes what must be done to prepare a student’s machine before
he may work on an exercise or to prepare a grading machine before it may grade
a job.

content

This section describes the questions composing the exercise.

autochecking

This section defines the pseudo-jobs that is, the non-regression tests to determine
if the exercise is well deployed.

grading

This section defines how to grade a job.

exercise = element exercise {
identification,
conditions,
equipment ?,
initializing ?,
content,
autochecking,
grading

}

130 CHAPTER 11. XML FORMATS

11.29 exerciseContent

When a student wants to practice an exercise, its fw4ex-enabled client receives an
extract of the content of the exercise that is, the questions and the accompanying files.
Grading procedures and other critical information are not sent. These files are sent in
a zipped file containing an fw4ex.xml file describing the content of the zipped file. This
XML document is an exerciseContent element defined as follows.

The synthesisDate attribute is the date when the zipped file was created.

exerciseContent = element exerciseContent {
Creation date of this exerciseContent:
attribute synthesisDate { xsd:dateTime },

identification,
conditions,
equipment ?,
content,

characteristics ?
}

11.29.1 characteristics

This element contains numbers extracted from the database. These numbers may be
used to help users to select exercises or to help the client runtime to make the user
wait for the report.

characteristics = element characteristics {
element statistics {

Mean time to process a job (extracted from the db):
attribute meantime { xsd:decimal },
Mean number of attempts to succeed with the exercise:
attribute meantrials { xsd:decimal },
Number of students having attempted to do this exercise:
attribute students { xsd:nonNegativeInteger },
Number of students that succeeded:
attribute sucesses { xsd:nonNegativeInteger }

}
}

11.30 exerciseStem

Some fw4ex-enabled clients (the javascript browser version for instance) prefer to re-
ceive selected parts of the previous zip file. The exerciseStem contains the displayable
content of the exercise that is, the introduction and the questions.

exerciseStem = element exerciseStem {
Creation date of this exerciseStem:
attribute synthesisDate { xsd:dateTime },
some urls ???
exercise.id, ???
identification,
equipment ?,
content

}

11.31. CONTENT 131

11.31 content

The content element contains an optional introduction, a sequence of questions fol-
lowed by an optional conclusion. The introduction and conclusion element may be an
XHTML inlined text or refer to an external file (in the tar gzipped exercise) containing
this XHTML text.

An exercise always have at least one question. It may have only one question for
one-liner exercises for instance.

content = element content {
The maximal mark that can be obtained with this exercise:
This is a possible annotation that, if present, should be coherent
with the sum of questions’ totalMarks.
attribute totalMark { xsd:decimal } ?, # CHECK! only positive floats!
a longer text serving as an introduction to the exercise
element introduction {

infile.or.inline.xhtml.content
} ?,

content.question +,
element conclusion {

infile.or.inline.xhtml.content
} ?

}

11.32 content.question

A question element is identified by an internal name (used for internal references: this
name is used to get the associated grading programs). The totalMark attribute deter-
mines the maximal mark that might be given when grading this question. The sum of
the totalMark of all questions sets the total mark that might be obtained when grading
the whole exercise.

The stem element contains an XHTML-like inlined text asking a question or may refer
to an external file holding this XHTML-like text. The external file is a file from the tar
gzipped exercise.

The expectations element is a container defining the files (and their structuring
directories) that are expected in a student’s submission.

The other elements hint and solution are reserved for some future, they are not
implemented for now.

The hint element defines a text that might appear after a given duration. This text
may help a student to find his way towards the solution.

The solution (not sent in exerciseStem document of course) may contain a solution
that might be used (or displayed) by a grading program if useful.

content.question = element question {
All question names must have a different name:
attribute name { xsd:NMTOKEN },
A human-readable title instead of the previous (short) name:
attribute title { string } ?,
The maximal mark that can be obtained with this question:
attribute totalMark { xsd:decimal }, # CHECK! only positive floats!
files expected from the student (their name is imposed):
element expectations {

Are all expectations listed ?

132 CHAPTER 11. XML FORMATS

attribute exhaustive { xsd:boolean } ?,
What to do in case of missing expectations:
attribute iferror {

"abort exercise"
| "abort question"

} ?,
expectation *

},
The text of the question:
element stem {

infile.or.inline.xhtml.content
},
Maybe some hints that will appear later... NYI
element hint {

attribute when { xsd:duration }, # in seconds
infile.or.inline.xhtml.content

} *,
element solution {

infile.or.inline.xhtml.content
and some additional resources or URLS towards explanations ???

} ?
}

11.33 infile.or.inline.xhtml.content

In many places where texts are expected, it is possible or to put the text in the appro-
priate XML element or to store it in a separate file somehere in the exercise tar gzipped
file. For small texts, the first solution might be preferred but it augments the size of
the fw4ex.xml exercise description. The second solution potentially leads to many small
files but these small files may be shared by different exercises and may therefore factor
some common texts.

To refer to a separate file, use the authorfilename attribute otherwise insert the text
in the content of the element. Filenames are specified in Unix notations that is, with
slashes to express directory structures. Conventionnally, the filename do not start with
a slash. For example, if the someExercise.tgz file contains

fw4ex.xml
data/a.txt
stem/Q1.xml

Then to refer to the Q1.xml file, one should write:

authorfilename=’stem/Q1.xml’

CHECK what happens when the filename starts with a slash ???

infile.or.inline.xhtml.content =
(

xhtml.content
| # relative to ~author/
CHECK! No leading / please! No funny chars!
attribute authorfilename { xsd:string }

)

11.34. AUTOCHECKING 133

11.34 autochecking

The autochecking element defines how the exercise is checked before being offered to
students. This element contains submission elements corresponding to submissions
whose expected mark will be checked.

autochecking = element autochecking {
submission +

}

11.35 submission

The submission element defines the files that a student may submit. These files will
then be graded and the final mark should be in accordance with the expected mark.
This allows to check that the grading programs work well, that the virtual machine
contains all the utilities needed to grade.

A submission has a name so it may report anomalies with the name of the submis-
sion. Usual names are null, perfect, almost etc. I usually add new submissions after
fixing grading bugs to be sure I’ve fixed them!

The epsilon attribute is there to compensate the rounding problem. All marks are
rounded up to two decimals so, to assert that 0.99 and 1 are close enough, just set
epsilon to be greater than 0.01.

A submission with a true skip attribute must not be marked. The associated pseudo
submission is not yet ready.

The submission.content defines the content of the submission.

submission = element submission {
attribute name { xsd:Name },
The copy must be graded with a mark equal to expectedMark +/- epsilon
attribute expectedMark { xsd:decimal },
[annotation:default = "0.01"]
attribute epsilon { xsd:decimal } ?,
[annotation:default = ’false’]
attribute skip { xsd:boolean } ?,
The content of the submission:
submission.content

}

11.36 submission.content

The submission may be given inline or be contained in an external directory.

submission.content = element content {
submission.external.content

| submission.inline.content
}

11.37 submission.external.content

If the submission is contained in a directory then mention that directory. Convention-
ally, submissions are in a sub-directory (named after the name of the submission) of
the pseudos/ directory. For instance, an exercise tgz might be:

134 CHAPTER 11. XML FORMATS

fw4ex.xml
pseudos/null/
pseudos/perfect/program

In which case, the XML fragment might be:

<submission name=’perfect’ expectedMark=’20’ directory=’pseudos/perfect’/>
<submission name=’null’ expectedMark=’0’directory=’pseudos/null’/>

NOTE: empty directories are somewhat problematic in tar or zip archives. It is better
to create a empty file within them.

submission.external.content =
relative to ~author/
attribute directory { xsd:string },
empty

11.38 submission.inline.content

When the files are only small texts, they may be specified inline in the exercise descrip-
tion. The basename is the name of the file, the trim attribute specifies if leading and
trailing spaces or newlines should be removed. The content of the file might be given in
the content attribute or as content of the file element. Therefore,

<file basename=’foo.txt’ content=’Hello World’/>

is the same as:

<file basename=’foo.txt’ trim=’yes’/>
Hello World

</file>

submission.inline.content =
element file {

attribute basename { xsd:Name },
attribute trim { "yes" | "no" } ?,
(text
| (

attribute content { xsd:string } &
empty
)

)
} +

=cut

11.39 marking

The marking element sums up the main results of the grading process. The archived
attribute specifies when the job was posted by the student. The started attribute spec-
ifies when the VM started grading the job, the ended attribute specifies when the VM
ended grading the job. The finished attribute specifies when the student and author’s
reports were made available to students or authors.

The mark attribute is the mark given by the grading engine, the totalMark is a copy
of the maximal mark that might be given for that exercise.

11.40. INITIALIZING 135

The machine element specifies which machine graded the job, the exercise.id iden-
tifies which exercise (mainly which version) was used to grade the job.

Eventually, if the exercise contains several questions, the mark of every question
appears in the partialMark element paired with the name of the question.

marking = element marking {
date when the job was archived on server A:
attribute archived { xsd:dateTime },
date when the VM starts marking the job:
attribute started { xsd:dateTime },
date when the VM ends marking the job:
attribute ended { xsd:dateTime },
date when the markengine finishes storing results:
attribute finished { xsd:dateTime },
attribute mark { xsd:decimal },
attribute totalMark { xsd:decimal },
the precise marker that graded the job:
machine ?,
The identifier of the exercise:
exercise.id,
marks per question
element partialMark {

attribute name { xsd:NMTOKEN },
attribute mark { xsd:decimal }

} *
}

11.40 initializing

The initializing section defines how to prepare the student machine in order to be
able to practise the exercise. It also defines how to prepare the grading engine to be
able to grade a job. These actions may be: compile a library, uncompress some data
files, etc. These actions are specified by scripts.

initializing = element initializing {
script +

}

11.41 grading

The grading element defines how to grade a student’s submission. It first defines which
machine should be used, the limit to set, the POSIX environment to set up then a series
of scripts to run.

grading = element grading {
The maximal mark that can be obtained with this exercise:
attribute totalMark { xsd:decimal } ?, # CHECK! only positive floats!
machine,
how should be graded every question:
limit *,
environment ?,
(grading.question | command) +

}

136 CHAPTER 11. XML FORMATS

11.42 machine

The machine element specifies the VM required to mark the student’s submission. There
are some predefined VM but you may specify your own. You may also specify the version
number of the machine you want to use though upward compatibility is a goal that is,
a new machine should not grade differently the jobs graded by an old version.

machine = element machine {
The nickname of the virtual machine to use (for instance a Debian
4.0r3 32bits) FUTURE Here ? identification ?
(

attribute nickname { xsd:string },
attribute version { xsd:nonNegativeInteger } ?)

| attribute name { xsd:string }
}
=cut

11.43 grading.question

A grading.question specifies how to check a question. The question is referred to by
its name (see the name attribute of the question element in the content element. The
commands to run may be limited (see limit) and benefit from some POSIX variables (see
environment).

If the attribute enabled if present and equal to yes, the question will not be graded.
This attribute allows the author to test only a part of a multi-questions exercise.

grading.question = element question {
Reference the associated question (described in the ’terms’ section):
attribute name { xsd:NMTOKEN },
[annotation:default = "yes"]
attribute enabled { "yes" | "no" } ?,

limit *,
environment ?,
command +

}

11.44 limit

Limits include timeout, cpu, diskio, etc. The name of these limits are predefined (ac-
cording to ‘man bash‘). The nicknames for the limits may also be used (they are defined
in /etc/security/limits.conf).

Some limits may specify the unit. Others don’t. For example,

<limit predefined=’stack’ value=’10’ unit=’Mi’/>
<limit predefined=’nice’ value=’5’/>
<limit predefined=’cpu time’ value=’10’ unit=’seconds’/>

limit = element limit {
attribute predefined {

"core file size" # (blocks, -c) 0
| "core"
| "data seg size" # (kbytes, -d) unlimited # Of course not

11.45. ENVIRONMENT 137

| "data"
| "max nice" # (-e) 20
| "nice"
| "file size" # (blocks, -f) unlimited
| "fsize"
| "pending signals" # (-i) unlimited
| "sigpending"
| "max locked memory" # (kbytes, -l) unlimited
| "memlock"
| "max memory size" # (kbytes, -m) unlimited
| "rss"
| "open files" # (-n) 1024
| "nofile"
| "pipe size" #(512 bytes, -p) 8
| "POSIX message queues" # (bytes, -q) unlimited
| "msgqueue"
| "max rt priority" # (-r) unlimited
| "rtprio"
| "stack size" # (kbytes, -s) 8192
| "stack"
| "cpu time" # (seconds, -t) unlimited
| "cpu"
| "max user processes" # (-u) unlimited
| "nproc"
| "virtual memory" # (kbytes, -v) unlimited

=cut
| "file locks" # (-x) unlimited
| "locks"

}, # where block = 1024 bytes.
attribute value { xsd:nonNegativeInteger },
attribute unit {

"block" | "blocks"
| "byte" | "bytes"
| "second" | "seconds"
| "M" | "k" # absolute numbers: 10^6 and 10^3.
| ’Mi’ | ’ki’ # absolute numbers: 2^20 and 2^10.

} ?
}

11.45 environment

These elements introduce or remove POSIX variables into or from the environment.
They may introduce in the context of the exercise, a question or a single script. The
scope of the variable is accorded.

environment = element environment {
(environment.assignment
| environment.hide
) +

}

138 CHAPTER 11. XML FORMATS

11.46 environment.assignment

This element introduces a POSIX variable. These variables are useful for the author and
should not disturb the FW4EX engine therefore no variable with a prefix of FW4EX is
allowed. The variable may be specified with a value or a pathname targeting the author
directory.

<set name=’WHAT’ value=’42’/>
<set name=’FILE’ authorfilename=’data/some.file’/>

In the last example, the value of FILE will the be the absolute filename leading to the
file data/some.file from the exercise tgz.

environment.assignment = element set {
attribute name { xsd:NMTOKEN - ("^FW4EX.*") },
(attribute value { xsd:string }
| # relative to ~author/
attribute authorfilename { xsd:string }

)
}

11.47 environment.hide

This element specifies which POSIX variable(s) to hide from the confined program. The
variable may be specified by its name or a set of variables may be specified by a regular
expression.

environment.hide = element hide {
(attribute name { xsd:NMTOKEN }
| attribute regexp { xsd:NMTOKEN } # NOT YET IMPLEMENTED
)

}

11.48 command

A command may be predefined or may refer to a script.

11.49 predefined.action

Currently, there is only one predefined action: the echo action (reminiscent of the simi-
lar task from Ant).

11.50 echo

Instead of writing a script to emit a string, something like:

<script>
cat <<EOF

<p>Hello you</p>
EOF
</script>

11.51. SCRIPT 139

One may write alternatively one of the following:

<echo><p>Hello you</p></echo>
<echo message="<p>Hello you</p>"/>
<echo authorfilename=’hello.you’/>

Where hello.you is a file (in the exercise targz) containing some text.
BUG: UNICODE letters seem to be translated into Latin1 ???

echo = inline.echo | attributed.echo | external.echo
inline.echo = element echo {

xhtml.inline.text
| xhtml.enumeration
| xhtml.paragraph

}
attributed.echo = element echo {

attribute message { xsd:string },
empty

}
external.echo = element echo {

relative to ~author/
attribute authorfilename { xsd:string },
empty

}

11.51 script

A script is a series of commands written in some scripting language (sh, perl, ocaml,
etc.). The content of the script may be specified inline (within the XML element) or in
some external file. If the script node has a idref attribute then it is generated from
another node (the one with the associated id attribute). This accomodates the fact that
nodes whose content is written in the fw4exsh language is compiled into bash. It is up
to the marking slave to run the compiled version or to interpret the original source. Of
course, the other version has to be ignored (hence the id-ref link).

script = inline.script | xml.script | external.script

11.52 common.script.content

Whether inlined or externally defined, scripts share a number of common characteris-
tics. Scripts may be limited, the environment may be altered, the behaviour after an
error may also be specified.

iferror

If the script exits with an erroneous exit code (a byte different from zero) then
either the entire grading process may be aborted, either the grading process of the
current question is aborted or nothing occurs (this is the default action) and the
grading process resumes with the next script.

iferror = attribute iferror { "abort exercise" | "abort question" | "next script" }

limit

140 CHAPTER 11. XML FORMATS

There are two kinds of limits that might be set. The limits inherited from the
ulimit POSIX command or, more finely, the limits accepted by the confine utility
which are three:

= over

maxcpu
This tells how many seconds the script is allowed to run. This is a wall-clock
duration therefore the script might be impacted if the grading machine is busy.

maxout
This tells how many bytes the script is allowed to produce on its stdtout. You may
use the multiplier k (1000), M (1000*1000) or ki (1024) or Mi (1024*1024).

maxerr
This tells how many bytes the script is allowed to produce on its stdterr. You may
use the multiplier k (1000), M (1000*1000) or ki (1024) or Mi (1024*1024).

common.script.content =
limit *,
environment ?,
What to do in case of problem (i.e., exit value != 0):
[annotation:default = "next script"]
iferror ?,
parameters for confiner:
attribute maxcpu { xsd:nonNegativeInteger } ?,
attribute maxout { xsd:NMTOKEN { pattern = "\d+([kM]i?)?" } } ?,
attribute maxerr { xsd:NMTOKEN { pattern = "\d+([kM]i?)?" } } ?,
arguments for the script: NOT YET IMPLEMENTED
argument *

11.53 inline.script

An inline script is specified in the body of the script element. By default, the script is
assumed to be a sh script. The trim attribute removes leading and trailing spaces.

The script should be runnable that is, may start with a #! comment specifying the
interpreter to run. This first line will be added if the language attribute is present and
no such first line already exists.

Pay attention to XML and avoids using less-than signs without precaution. To ease
readability, instead of writing:

<script>
read w < some.file

</script>

It is preferrable to write:

<script><![CDATA[
read w < some.file

]]></script>

inline.script = element script {
common.script.content,
language.attribute ?,
attribute trim { "yes" | "no" } ?,
text

}

11.54. XML.SCRIPT 141

11.54 xml.script

Instead of writing shell scripts you may generate them with a graphical UI. The GUI
stores its state in XML, a restricted subset of shell in XML syntax named fw4exsh. For
now, we suppose that if an xml.script node is present then an inline.script is also
present with the compiled version. The GUI uses the first node to restaure its state but
must regenerate accordingly the other node in case of changes.

11.54.1 script

This fw4exsh language describes the structure of a marking script. This is a tree of loops
with commands as leaves. The chDir command allows to change the current directory.

Many of these nodes may be annotated with a totalMark attribute stating what is
the maximal number of points that might be won after evaluation of this node.

script_element =
loop

| chDir
| command

11.54.2 loop

It is possible to loop over an enumeration of strings or to loop over a set of files (or
directories). Loops are named so it is possible to refer to them in order to know the
number of iteration, the current index and the current value.

loop = loopOnFiles | loopOnStrings

11.54.3 chDir

Changes the current directory. This change is limited to the evaluation of the body.

chDir = element chDir {
(

to refer to the current value of the index of the loop of that name:
attribute nameref { xsd:NMTOKEN }

| (
attribute fw4exdir { "/" | "teacher" | "student" },
attribute dirname { xsd:string }
)

),
element body { script_element }

}

11.54.4 command

Commands may represent an assertion (checking whether some property hold) or the
comparison of some student’s program output with teacher’s output.

command = assertCommand | compareCommand

11.54.5 component

A command is compound of the name of a program to run and some components speci-
fying with which command line arguments, which input streams, etc.

142 CHAPTER 11. XML FORMATS

11.55 external.script

This element specifies a program to run. This program may be in the targz exercise file
or in the common library.

external.script = element script {
common.script.content,
(

relative to ~author/
attribute authorfilename { xsd:string }

|
relative to FW4EX_LIB_DIR/ # NOT YET IMPLEMENTED
attribute scriptname { xsd:string }

),
FUTURE: maybe some arguments ?
empty

}

11.56 argument (NOT YET IMPLEMENTED)

Some general scripts may require arguments to be tailored to a specific task. Arguments
must be given in positional order, they may be regular strings or filenames relative to
the exercise targzipped file or relative to the student’s files.

argument = element argument {
(attribute value { xsd:string }
|

file relative to ~student/
attribute studentfilename { xsd:string }

| # relative to ~author/
attribute authorfilename { xsd:string }

)
}

11.57 expectation.directory

An expectation.directory element defines the basename of the directory. A comment
(an XHTML-like text) may be associated. This comment may appear in an interactive
FW4EX client to hint what this directory is for. The all attribute tells whether the entire
content of the directory should be submitted. If all is true the inner expectations must
also be checked.

expectation.directory = element directory {
attribute basename { xsd:string },
[annotation:default = "false"]
attribute all { xsd:boolean } ?,
element comment { xhtml.inline.text } ?,
expectation *

}

11.58. EXPECTATION.FILE 143

11.58 expectation.file

An expectation.file element describes a file that the student should submit. A com-
ment (an XHTML-like text) may be associated. This comment may appear in an in-
teractive FW4EX client to hint what this file should contain. An initial element may
contain hints about the height (in lines) and width (in columns) of a widget that might
be used to collect the student’s input. The initial content of the widget might as well be
specified.

expectation.file = element file {
attribute basename { xsd:string },
element comment { xhtml.inline.text } ?,
[annotation:default = "lf"]
attribute eol { "lf" | "cr" | "crlf" } ?,
[annotation:default = "UTF-8"]
attribute coding { "UTF-8" | "ISO-8859-1" } ?,
[annotation:default = "mandatory"]
attribute presence { "mandatory" | "optional" } ?,
attribute show { xsd:boolean } ?,
The shape of the solution (may be used to prefill the widget that
will contain the student’s solution). Attributes are hints for the
number of lines of the expected solution.
element initial {

attribute height { xsd:positiveInteger } ?,
attribute width { xsd:positiveInteger } ?,
text

} ?
}

11.59 equipment.content

If the a/b.c and a/d.e files must be sent then this will be described as:

<directory basename=’a’>
<file basename=’b.c’/>
<file basename=’d.e’/>

</directory>

or, alternatively, as:

<directory basename=’a’>
<file basename=’b.c’/>

</directory>
<directory basename=’a’>
<file basename=’d.e’/>

</directory>

equipment.content = (file | directory) *

11.60 file (PARTIALLY IMPLEMENTED)

This element describes a file. Only the basename is a required attribute. Among the
others maybe the eol attribute will be implemented to cope with end-of-lines for text
files.

144 CHAPTER 11. XML FORMATS

When file is part of the equipment, the comment may be used by a FW4EX-client to
accompany a link to get the file. When file is part of the expectations, the comment may
be used to accompany an input box or file input box.

file = element file {
attribute basename { xsd:Name },
element comment { xhtml.inline.text } ?,
attribute size { xsd:nonNegativeInteger } ?,
attribute digest { xsd:NMTOKEN } ?,
attribute digestAlgorithm { "sha1" } ?,
[annotation:default = "binary"]
attribute type { "text" | "binary" } ?,
[annotation:default = "lf"]
attribute eol { "lf" | "cr" | "crlf" } ?,
[annotation:default = "application/octet-stream"]
attribute mimetype { xsd:string } ?,
[annotation:default = "false"]
attribute hidden { xsd:boolean } ?

}

directory = element directory {
attribute basename { xsd:Name },
(file | directory) *

}

11.61 tag

Exercises may be tagged with names (usually short names that is, words). These tags
may stress the type of exercise (examination, one-liner, etc.), the language of the answer
(C, Java, bash, sed, etc.), the set of exercises comprising this exercise, etc.

tag = element tag {
attribute name { xsd:Name }

}

11.62 authorship

This element defines who are the authors, how to communicate with them, related
information describing them. Their contribution to the exercise may also be described.
Authors are identified by their email though internally (in the database), authors are,
like person, identified by an integer.

authorship = element authorship {
element author {

attribute since { xsd:dateTime } ?,
attribute till { xsd:dateTime } ?,
element firstname { xsd:string },
element middlename { xsd:string } ?, # may be a simple initial
element lastname { xsd:string },
element postlastname { xsd:string } ?, # additional postfixed names
This email is used to identify the author:
element email { xsd:string },
This email is used by students to communicate directly with the author:

11.63. CONDITIONS 145

element exerciseEmail { xsd:string } ?,
element siteurl { xsd:anyURI } ?,
element comment { xhtml.inline.text } ?

} +,
element contributor {

attribute since { xsd:dateTime } ?,
attribute till { xsd:dateTime } ?,
element firstname { xsd:string },
element middlename { xsd:string } ?, # may be a simple initial
element lastname { xsd:string },
element postlastname { xsd:string } ?, # additional postfixed names
This email is used to identify the contributor:
element email { xsd:string },
This email may be used by persons
element exerciseEmail { xsd:string } ?,
element siteurl { xsd:anyURI } ?,
element comment { xhtml.inline.text } ?

} *
}
=cut

11.63 conditions

This element specifies under which conditions this exercise may be practised. This
element defines the cost (in Euro). A description describes the resources needed to
practice the exercise: these conditions may be on the student’s machine OS, or required
libraries or required skills, etc.

conditions = element conditions {
attribute cost { xsd:double },
attribute costunit { "euro" },

=cut

This description is shown to the student and describes the machine,
the OS, the languages, the libraries needed for the exercise:
element description { xhtml.content }

}

11.64 Common abbreviations

These are common abbreviations used in this grammar.

exercise.id = element exercise {
attribute exerciseid { xsd:NMTOKEN },
attribute safecookie { xsd:string } ?,
attribute name { xsd:string } ?,
attribute nickname { xsd:string } ?,
attribute totalMark { xsd:decimal } ?

}
person.id = element person {

attribute personid { xsd:positiveInteger }
}
job.id = element job {

146 CHAPTER 11. XML FORMATS

attribute jobid { xsd:NMTOKEN }
}

11.65 xhtml.section

A section has a title and a body. A name may be specified for internal links. The rank
attribute may be used to number the sections.

xhtml.section = element section {
attribute name { xsd:NMTOKEN } ?,
attribute rank { xsd:nonNegativeInteger } ?,
xhtml.title ?,
xhtml.content

}

xhtml.title = element title {
xhtml.inline.text

}

xhtml.paragraph =
xhtml.text.paragraph

| xhtml.codeblock
| xhtml.image
| fw4ex.warning
| fw4ex.error
| fw4ex.success

11.65.1 image PROVISIONAL

Sometimes, it might be useful to embed an image within the grading report.

xhtml.image = element img {
attribute src { xsd:string },
attribute width { xsd:positiveInteger } ?,
attribute height { xsd:positiveInteger } ?,
attribute alt { xsd:string } ?,
empty

}

11.65.2 xhtml.text.paragraph

Be rather loose: Accept p elements within a p element.

xhtml.text.paragraph = element p {
(

xhtml.inline.text
| xhtml.codeblock
| xhtml.text.paragraph
| fw4ex.warning
| fw4ex.error
| fw4ex.success

) +
}

11.66. WARNING 147

11.66 warning

A warning may be emitted to notify a weird situation but that does not require to stop
the grading engine. For instance, a light error may be corrected ’en passant’ by the
grading engine but notified.

fw4ex.warning = element warning {
(

xhtml.inline.text
| xhtml.codeblock

) +
}

11.67 error

This element is used to notify an error to the student.

fw4ex.error = element error {
(

xhtml.inline.text
| xhtml.codeblock

) +
}

11.68 success

This element is used to notify a success to the student.

fw4ex.success = element success {
(

xhtml.inline.text
| xhtml.codeblock

) +
}

11.69 xhtml.codeblock

This element is used to present some code. A special stylesheet may address these
elements.

In order to present an interaction between a machine and a user, one may distin-
guish the two with the machine and user elements. Here is an example:

<pre>
<machine>% </machine><user> date
</user><machine>Thu Dec 25 15:13:30 CET 2008
% </machine></pre>

NOTE: No newline character between machine and user tags within a <pre> element.

xhtml.codeblock = element pre {
useful for <pre id=’fw4ex_student_code’>
attribute id { xsd:NMTOKEN } ?,
attribute data-language { xsd:NMTOKEN } ?,

148 CHAPTER 11. XML FORMATS

mixed {
(xhtml.code.user
| xhtml.code.machine
| xhtml.code.line.number
| fw4ex.anchor
) *

}
}

xhtml.code.user = element user {
text

}
xhtml.code.machine = element machine {

text
}
xhtml.code.line.number = element lineNumber {

text
}

11.70 xhtml.enumeration

As usual there are numbered and unnumbered enumerations.

xhtml.enumeration =
xhtml.ordered.enumeration

| xhtml.unordered.enumeration

xhtml.ordered.enumeration = element ol {
(element li { xhtml.inline.text }
| xhtml.codeblock

) +
}

xhtml.unordered.enumeration = element ul {
(element li { xhtml.inline.text }
| xhtml.codeblock

) +
}

11.71 xhtml.inline.text

This element defines a text that appears within a single paragraph. These text fragments
may be styled as in HTML, they may contain a partial mark stating the the student wins
a number of points or they may contain additional information (fw4ex.anchor) for the
sole needs of the grading platform.

xhtml.inline.text = mixed {
(xhtml.styled
| xhtml.code
| fw4ex.partial.mark
| fw4ex.anchor
) *

}

11.72. FW4EX.PARTIAL.MARK 149

11.72 fw4ex.partial.mark

This element states that the student wins value points. The same value appears as the
body of the element so it may be styled with some CSS. To be valid, the partial mark
must contain a valid key known by the author but not by the student.

fw4ex.partial.mark = element mark {
attribute key { xsd:NMTOKEN },
attribute value { xsd:decimal },
xsd:decimal

}

xhtml.styled =
xhtml.emph

| xhtml.bold
| xhtml.sub
| xhtml.sup
| xhtml.anchor
| fw4ex.warning
| fw4ex.error
| fw4ex.success
| xhtml.normal

11.73 xhtml.comparison (NOT YET IMPLEMENTED)

May be used in some future when student’s and teacher’s texts must be compared.
Some javascript may be used to stress the differences.

xhtml.comparison = element comparison {
element student { xhtml.paragraph },
element teacher { xhtml.paragraph }

}

11.74 xhtml.file.annotation

This element gathers annotations with respect to a student’s file. An annotation has a
kind (a short word telling which type of annotation it is. From this an icon may also be
inferred) and an associated text.

Annotations annotate part of the student’s file. They may be hooked at a precise
location (specified by a line and a column) or be associated to a region of the file.

xhtml.file.annotation = element annotations {
attribute studentfilename { xsd:string },
xhtml.annotation *,
an overall comment for the whole file:
xhtml.inline.text ?

}

xhtml.annotation = xhtml.line.annotation | xhtml.region.annotation

xhtml.line.annotation = element annotation {
attribute kind { xsd:NMTOKEN },
attribute line { xsd:nonNegativeInteger },

150 CHAPTER 11. XML FORMATS

attribute column { xsd:nonNegativeInteger },
xhtml.inline.text

}
xhtml.region.annotation = element annotation {

attribute kind { xsd:NMTOKEN },
attribute start-line { xsd:nonNegativeInteger },
attribute start-column { xsd:nonNegativeInteger },
attribute stop-line { xsd:nonNegativeInteger },
attribute stop-column { xsd:nonNegativeInteger },
xhtml.inline.text

}

11.75 fw4ex.anchor

These elements are reserved for the FW4EX platform. They are used to comment the
grading process and to tidy up the generated xhtml. This is often useful since bash
lacks a try-catch-finally feature so it is difficult to ensure that all opening tags do have
their associated closing tags.

fw4ex.anchor = element FW4EX {
attribute phase { "begin" | "end" } ?,
attribute what { xsd:string },
attribute when { xsd:dateTime } ?,
empty

}

11.76 Final notes

xsd:dateTime is CCYY-MM-DDThh:mm:ssZ

	Overview
	Terminology
	From the student point of view
	Selection of an exercise
	Downloading accompanying material
	Submission
	Grading
	Result
	Conclusion

	From a teacher point of view
	From an author point of view
	From CodeGradX infrastructure point of view
	Server p (for portal)
	Server www (for web site)
	Server a (for acquisition)
	Daemon md (for marking driver)
	Machine ms (for marking slave)
	Server d (for dynamic storage)
	Server s (for storage)
	Server e (for exercise)
	Server x (for XML)

	Exercise protocol (the E protocol)
	Summary
	Use of equipment files

	Format
	Administrator supplementary interface

	Submission protocol (the A protocol)
	User information
	Exercise information
	File content
	Batch
	Client

	Errors
	Summary
	Administrator supplementary interface

	The XML server (the X protocol)
	User authentication
	Summary
	Personal supplementary interface
	Administrator supplementary interface TO BE FINISHED

	Dynamic storage protocol (the D protocol)
	Summary

	Storage protocol (the S protocol)
	Case studies
	The MOOC ``Socle informatique'' from CNAM
	LTI Protocol
	Evolutions

	Authors guide
	Choose an identifier
	Naming exercises
	Naming new exercises

	Overall directory structure
	Grading
	Grading by comparison
	Grading by inspection
	Marks

	Author's script
	Environment
	Utilities
	win
	confine
	transcodeCarefully
	headtail.sh

	Libraries
	Local checks
	basicLib.sh
	moreLib.sh
	imgLib.sh
	makefileLib.sh
	comparisonLib.sh

	Extra Libraries
	libILP.sh

	Patterns
	BourgEnBresse.sh
	Laon.sh
	Moulins.sh
	Digne.sh
	Gap.sh
	Nice.sh

	Languages
	Java
	Octave
	MzScheme

	Examples

	Campaign management
	Set of exercises

	Grading engine
	Exercise life-cycle
	Shells and streams
	CodeGradX agent
	Authenticating
	Obtaining exercises
	Posting a job
	Posting multiple jobs
	Posting a new exercise

	The new CodeGradX agent in JavaScript
	Installation

	VM for authors

	XML formats
	Grammar
	Use cases
	Student's submission
	Teacher's batch submission
	Teacher's exercise submission

	Root element: fw4ex
	jobSubmission
	jobSubmittedReport
	multiJobSubmission
	multiJobSubmittedReport
	batchSubmission
	exerciseSubmission
	exerciseSubmittedReport
	studentHistory
	personHistory
	exercisesList DEPRECATED in favor of exercisesPath
	exercisesPath
	constellationConfiguration (FUTURE)
	jobTrackerReport (FUTURE)
	acquisitionServerState
	exerciseServerState
	jobsList
	authenticationAnswer
	groupReport
	groupsReport
	errorAnswer
	jobStudentReport
	multiJobStudentReport
	jobAuthorReport
	exerciseAuthorReport
	exercise
	exerciseContent
	characteristics

	exerciseStem
	content
	content.question
	infile.or.inline.xhtml.content
	autochecking
	submission
	submission.content
	submission.external.content
	submission.inline.content
	marking
	initializing
	grading
	machine
	grading.question
	limit
	environment
	environment.assignment
	environment.hide
	command
	predefined.action
	echo
	script
	common.script.content
	inline.script
	xml.script
	script
	loop
	chDir
	command
	component

	external.script
	argument (NOT YET IMPLEMENTED)
	expectation.directory
	expectation.file
	equipment.content
	file (PARTIALLY IMPLEMENTED)
	tag
	authorship
	conditions
	Common abbreviations
	xhtml.section
	image PROVISIONAL
	xhtml.text.paragraph

	warning
	error
	success
	xhtml.codeblock
	xhtml.enumeration
	xhtml.inline.text
	fw4ex.partial.mark
	xhtml.comparison (NOT YET IMPLEMENTED)
	xhtml.file.annotation
	fw4ex.anchor
	Final notes

